LYCEE PILOTE SFAX Année :20/21	SERIE N °7 : REACTIONS ACIDE-BASE (Généralités)	4 ^{EME} ANNEE MR :AMMAR
I) On considère les deux couples acide-ba	$P_{\text{opp}}(A/P)$ of (A/P_{opp}) are $P_{\text{opp}}(A/P_{\text{opp}})$	
,	• • • • • • • • • • • • • • • • • • • •	
 A₁ est l'acide HCO a et l'acide HCO Donner les formules des bases conjugu Ecrire l'équation de la réaction entre B La réaction entre A₁ et B₂ a une constar Comparer les forces des deux couples. Exprimer K en fonction de Ka₁ et Ka₂. La réaction entre A₁ et une autre base l'accomparer les forces des bases B₂ et B₃ 	ées. 1 et l'eau. Calculer sa constante d'équilibre. 1 nte d'équilibre K=0,1. Calculer pKa ₂ et pK _{b2} . B ₃ a une constante d'équilibre K'>K.	
II) On considère à 25°C les couples acide	e-base suivants : HF/ F- tel que p K_{a1} =3,2 ; HCO ₂ H / HCO $_2^-$ tel qu	ue p $K_{b2} = 10,25$ et HNO_2 / NO_2 de
constante d'acidité K _{a3} .		
1) On considère l'équilibre d'équation : I	$\mathbf{HF} + \mathbf{NO}_2^- \rightleftharpoons \mathbf{F}^- + \mathbf{HNO}_2$	
a- Exprimer la constante d'équilibre de ce b- Déduire K_1 en fonction de K_{a1} et K_{a3} .	tte équation K ₁ .	
2) On considère maintenant l'équilibre d'é	équation : $HNO_2 + HCO_2^- \rightleftharpoons NO_2^- + HCO_2H$. Expr	imer la constante d'équilibre de cette
équation K ₂ en fonction de K _{a2} et K _{a3} . 3) a- En se basant sur ce qui précède et la b- Classer les bases associées à ces couple	relation K ₂ -K ₁ =1,55. Déterminer K ₁ et K ₂ puis déduire pK _{a3} .	
III) On dispose d'une solution d'acide éthat	noïque CH ₃ COOH de concentration initiale C _A =10 ⁻² mol.L	-1 et de concentration finale en ion
éthanoate $\mathrm{CH_3COO}^-$ égale à 4. 10-4 n	aol.L ⁻¹ .	
 a- Rappeler la définition d'un acide selon Bronsted. b- Ecrire l'équation de la réaction de l'acide éthanoïque avec l'eau. c- En supposant nul les ions H₃O⁺ provenant de l'eau. Exprimer puis calculer le taux d'avancement final de cette réaction. Vérifier que l'acide éthanoïque est un acide faible. 		
d – Calculer $\mathbf{pKa_1}$ du couple $\mathbf{CH_3C}$	COOH/CH ₃ COO	
2) On donne: pKa ₂ (CH ₃ NH ⁺ ₃ /CH ₃ NH ₂	$_{2}$) = 10,7 et pKa ₃ (HCN/CN ⁻) = 9,3.	
	n S _A d'acide cyanhydrique HCN de concentration initiale une solution S _B de méthylamine CH ₃ NH ₂ de concentration	

b- Ecrire l'équation bilan de la réaction qui se produit.

- c- Exprimer la constante d'équilibre K de cette réaction en fonction de pKa2 et pKa3 et la calculer.
- d- Calculer les quantités de matière de chaque espèce après réaction.
- IV) On considère les trois couples acide-base suivants :
- * couple 1 :CH₃CO₂H /CH₃CO $\frac{-}{2}$; couple 2 : HCO₂H/ HCO $\frac{-}{2}$ et le couple 3 : C₆H₅CO₂H /C₆H₅CO $\frac{-}{2}$.
- $1 \) \ On \ r\'ealise \ la \ r\'eaction \ d \ \'equation : \ HCO_2H \ + \ C_6H_5CO_2^- \ \ \ \ HCO_2^- \ + \ C_6H_5CO_2H. \ Sachant \ qu'un \ m\'elange \ \'equimolaire \ contenant$
- 5.10⁻² mol de HCO₂H et C₆H₅CO₂ donne à l'équilibre un taux d'avancement égale à 0,64.
- a-Exprimer la constante d'équilibre de la réaction K en fonction de τ_f puis montrer que $K \simeq 3,16$.
- b- On ajoute au mélange obtenu à l'équilibre et sans variation de volume 2 .10-5 mol de HCO $\frac{1}{2}$, dans quel sens se déplace l'équilibre. Justifier
- c- Comparer la force des deux acides utilisés.
- 2) La réaction d'équation: $CH_3CO_2H + C_6H_5CO_2^- \iff CH_3CO_2^- + C_6H_5CO_2H$ possède une constante d'équilibre $K' = \frac{1}{K}$
- a- Classer les trois bases par ordre de force croissante.
- b- Exprimer K et K' en fonction des constantes d'acidités des couples acide-base intervenants dans chaque réaction.
- c- Montrer que $Ka_2 = 10 Ka_1$
- d- Calculer pKa_1 ; pKa_2 et pKa_3 sachant que $pKa_1 + pKa_2 = 8,4$.
- V) On donne à 25°C les constantes relatives aux couples (acide/ base) suivants:

 $(HC\ell O / B_1) : Ka_1 = 3,16.10^{-8}$

 $(A_3/C_2H_5NH_2): pKb_3 = 3,2$

 $(NH_4^+/NH_3): pKa_2 = 9,25$

- $(C_6H_5CO_2H/C_6H_5CO_2^-): Kb_4 = 1,58.10^{-10}$
- 1) Donner la définition d'un acide de Bronsted et les formules de B1 et A3.
- 2) Comparer les forces des acides HCℓO et A₃.
- 3) On prépare une solution aqueuse de l'acide $C_6H_5CO_2H$ (A₄) de concentration $C = 10^{-2}$ mol. L^{-1} .

Dans cette solution, la molarité de la base C₆H₅CO₂⁻ est 8.10⁻⁴ mol.L⁻¹.

- a) Ecrire l'équation de la réaction entre cet acide et l'eau. Calculer sa constante d'équilibre.
- b) Calculer le taux d'avancement final de cette réaction.
- 4) On considère le système formé par 0,1 mol de HCℓO, 0,5 mol de CℓO⁻, 0,2 mol de NH₃ et 0,4 mol de NH₄⁺.
- a) Dans quel sens évolue le système ? Justifier la réponse
- b) Déterminer la quantité finale de NH3 de

<u>وقع مراحعة باكالوريا</u>

