Mr: Chahed

Série Exponentielle

4eme math

Exercice 1 : Donner la bonne réponse pour chacune des questions suivantes :

1°/ Le réel $x = e^{-2\ln \frac{1}{2}}$ est égale à :

b)
$$\frac{1}{4}$$

2°/ La valeur moyenne de la fonction : $x \to x e^{x^2} \; \, \text{sur} \left[0, \sqrt{2}\right] \; \text{est}$:

$$\frac{e^2-1}{2}$$
 ;

b)
$$\frac{e^2-1}{2\sqrt{2}}$$

c)
$$\sqrt{2}$$
 (e²

 4° / La fonction $x \to x - \ln(\frac{1+e^{x}}{2})$ est une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{2}{1+e^x}$$
 ; b) $f(x) = \frac{-2e^x}{1+e^x}$

b)
$$f(x) = \frac{-2e^x}{1+e^x}$$

; c) (x) =
$$\frac{1}{1+e^x}$$
.

5°/ La limite quand $x \to +\infty$ de la fonction $x \to \frac{1-2^x}{1+2^x}$ est :

$$b) - 1$$

c)
$$-\frac{1}{2}$$

6°/ Soit $f(x) = (\sqrt{2})^x$ alors la fonction dérivée de f est définie sur $\mathbb R$ par :

b)
$$f'(x) = \frac{\ln 2}{2} (\sqrt{2})^x$$

$$f'(x) = \ln 2(\sqrt{2})^x$$
; b) $f'(x) = \frac{\ln 2}{2}(\sqrt{2})^x$; c) $f'(x) = -\sqrt{2}\ln 2(\sqrt{2})^x$

Exercice 2:

Répondre par vrai ou faux en justifiant la réponse :

1°/ L'équation $2^{x^2-x} = 1$ admet dans \mathbb{R} deux solutions.

2°/ Pour tout réel x on $a: 3^x \ge 2^x$.

3°/ La droite d'équation : y = x est une asymptote oblique au voisinage de $+\infty$ à la courbe C_f de la fonction fdéfinie par : $f(x) = \ln(1 + e^x)$.

4°/ La fonction $x \to e^{\sqrt{x}}$ est dérivable sur $[0, +\infty[$.

5°/
$$f(x) = xe^{\frac{1}{x}} - \frac{1}{x}$$
 alors $\lim_{x \to 0^+} f(x) = +\infty$.

6°/
$$F(x) = \int_0^x \ln(1 + e^{-t}) dt$$
 alors $F'\left(\ln\left(\frac{1}{3}\right)\right) = 2\ln 2$.

Exercice 3:

I. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x - 1}{e^x + 1}$.

 C_f désigne la courbe de f dans un repère orthonormé $(0, \vec{l}, \vec{j})$.

 $1^{\circ}/a$) Dresser le tableau de variation de f.

b) Montrer que f réalise une bijection de \mathbb{R} sur]-1,1[. Expliciter $f^{-1}(x)$ pour tout $x \in]-1,1[$.

 $2^{\circ}/a$) Montrer que f est impaire.

b) Ecrire une équation de la tangente Δ à C_f au point O.

Etudier la position de C_f par rapport à Δ .

3°/ Tracer Δ , C_f et $C_{f^{-1}}$.

4°/ Calculer l'aire A de la région du plan limité par C_f et les droites d'équations :

$$x = -1 \text{ et } y = 0.$$

Soit *F* la fonction définie sur \mathbb{R}_+^* par $F(x) = \int_0^{\ln x} f(t) dt$.

1°/ Montrer que F est dérivable sur \mathbb{R}_+^* et que pour tout $x \in \mathbb{R}_+^*$ on a : $F'(x) = \frac{x-1}{x(x+1)}$.

2°/ a) Calculer (1), déduire que pour tout $x \in \mathbb{R}_+^*$ on a $F(x) = \int_1^x \frac{t-1}{t(t+1)} dt$.

b) Expliciter F(x) pour tout $x \in \mathbb{R}_+^*$. Retrouver A.

<u>موقع مراجعة باكالوريا</u> BAC.MOURAIAA.COM

c) Dresser le tableau de variation de F.

Exercice 4:

Partie A

Soit pour tout $x \in]-1, +\infty[: f(x) = \frac{e^x}{1+x}$ et $g(x) = \frac{e^x}{(1+x)^2}$. On désigne par (C) et (C') les courbes représentatives de f et g dans un repère orthonormé $(0,\vec{1},\vec{j})$.

1°/ Etudier les variations de f et de g et vérifier que pour tout $x \in]-1, +\infty[$,

$$g(x) = f(x) - f'(x)$$

- $2^{\circ}/a$) Etudier les positions relatives de (C) et (C').
 - **b)** Tracer (C) et (C').
- 3° Calculer l'aire de la partie du plan limitée par (C) et (C') et les droites d'équations x = 0 et x = 1. Partie B

On considère $J = \int_0^1 f(t) dt$

- 1°/ Montrer que $1 \le J \le \frac{e}{2}$.
- **2°/** soit (U_n) la suite définie par $U_0 = \int_0^1 e^t dt$ et \forall $n \in IN^*$, $U_n = (-1)^n \int_0^1 t^n e^t dt$.
 - a) Calculer U₀ et U₁.
 - **b)** A l'aide d'une intégration par parties, montrer que \forall $n \in IN$, $U_{n+1} = (-1)^{n+1}$ e + $(n+1)U_n$.
- **3°/** Dans cette partie, on suppose que $n \in IN^*$.

On pose $S_n = \sum_{k=0}^n U_k$ et $R_n = (-1)^{n+1} \int_0^1 t^{n+1} f(t) \ dt$

- a) Vérifier que $\forall t \in [0,1]$, $\frac{1}{1+t} = 1 t + t^2 + \dots + (-1)^n t^n + \frac{(-1)^{n+1} t^{n+1}}{1+t}$
- **b)** En déduire que $J = S_n + R_n$.
- c) Montrer que $|R_n| \le \frac{e}{2(n+2)}$.
- **d)** En déduire que la suite (S_n) est convergente et donner sa limite.

Exercice 5:

Soit la fonction définie par : $f(x) = \frac{1}{\sqrt{2e^x - 1}}$

- 1°/ a) Montrer que le domaine de définition de f est $I =]-\ln(2)\,; \ +\infty[$.
- b) Montrer que pour tout $x \in I$ on $a : f'(x) = -\frac{e^x}{\left(\sqrt{2e^x-1}\right)^3}$. Dresser le tableau de variation de f.
- c) Tracer la courbe C_f de f dans un repère orthonormé $(0; \vec{i}; \vec{j})$.
- 2°/ a) Montrer que f est une bijection de I sur]0 ; $+\infty$ [, on note g = f⁻¹ Expliciter g(x) pour > 0 .
- c) Tracer la courbe C_gdans le même repère.
- $3^{\circ}/En$ étudiant la fonction $\phi: x \to f(x) x \,$ sur I, montrer que l'équation f(x) = x

Admet un unique solution. Vérifier que $0 < \alpha < 1$.

4°/ Soit u la fonction définie sur $\left[0\,;\,\frac{\pi}{2}\right[\,par:u(x)=-ln(2cos^2(x))\,.$

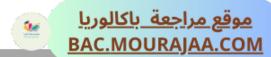
Dresser le tableau de variation de . Résoudre l'équation (x) = $\ln (2)$.

5°/ Soit F la fonction définie sur $\left[0\,;\,\frac{\pi}{2}\right[\,par:F(x)=\int_0^{u(x)}f(t)\;dt\,.$

Montrer que F est dérivable sur $\left[0; \frac{\pi}{2}\right]$ et calculer F'(x).

Soit D le domaine limité par C_f , l'axe des abscisses et les droite d'équations x=0 et $x=\ln{(2)}$

Exercice 6:



- I/ Soit f la fonction définie sur R par : $f(x) = e^{-x} ln(1 + e^x)$ 1) a) Montrer que : $\lim_{x \to -\infty} f(x) = 1$
- b) Vérifier que pour tout $x \in \mathbb{R}$ on $a : f(x) = xe^{-x} + e^{-x} ln(1 + e^{-x})$ puis calculer $\lim_{x \to +\infty} f(x)$
- 2) Soit h la fonction définie sur $[0, +\infty[$ par : $h(x) = \frac{x}{1+x} \ln{(1+x)}$ Etudier les variations de h et en déduire le signe de h(x)
- 3) a) Montrer que pour tout $x \in \mathbb{R}$ on a : $f'(x) = e^{-x}h(e^x)$ Puis dresser le tableau de variation de f
- b) Construire C_f on précisera la tangente au point d'abscisse $\boldsymbol{0}$
- 4) a) Vérifier que $\frac{1}{1+e^x} = \frac{e^{-x}}{e^{-x}+1}$
- b) Calculer l'aire de la partie limiter par C_f , x = 0, x = 1 et y = 0
- II/ Soit (U_n) la suite définie sur N par :

$$U_n = \sum_{k=0}^{n} (-1)^k \frac{e^{-k}}{k+1} \quad \text{et} \quad R_n = (-1)^{n+1} \int_0^{\frac{1}{e}} \frac{t^{n+1}}{1+t} dt$$

- a) Montrer que $\forall t > 0$ on a : $\frac{1}{1+t} = \sum_{k=0}^{n} (-1)^k t^k + (-1)^{n+1} \frac{t^{n+1}}{1+t}$
- b) En déduire que $\forall x > 0$ on a : $\ln(1+x) = \sum_{k=0}^{n} (-1)^k \frac{x^{k+1}}{k+1} + (-1)^{n+1} \int_0^x \frac{t^{n+1}}{1+t} dt$

Puis que $\ \forall x \in \mathbb{R} \ \text{on a}: \ \ln(1+e^x) = \sum_{k=0}^n (-1)^k \frac{e^{x(k+1)}}{k+1} + (-1)^{n+1} \int_0^{e^x} \frac{t^{n+1}}{1+t} \, dt$

- a) Montrer alors que : $f(x) = \sum_{k=0}^{n} (-1)^k \frac{e^{kx}}{k+1} + (-1)^{n+1} e^{-x} \int_0^{e^x} \frac{t^{n+1}}{1+t} dt$
- b) Montrer que : $U_n + e R_n = e \ln \left(\frac{1+e}{e}\right)$
- 3) Montrer que $|R_n| \le \frac{1}{(n+2)e^{n+2}}$, puis déterminer la limite de R_n
 - b) Montrer alors que : $\lim_{n\to+\infty} U_n = e \ln\left(\frac{1+e}{e}\right)$

Exercice 7: Soit g la fonction définie sur $\left| \frac{1}{e} \right|$, $+\infty \left[par : g(x) = \frac{\ln(x)}{(1+\ln(x))^2} \right]$

- 1) Dresser le tableau de variation de g
- 2) Construire C_g la courbe représentative de g dans un repère orthonormé $(0,\vec{\imath},\vec{\jmath})$
- 3) Soit $G(x) = \int_1^{e^x} g(t)dt$, $\forall x \in \mathbb{R}$
- a) Montrer que G est dérivable sur]-1, $+\infty$ [et on a : $G'(x) = \frac{xe^x}{(1+x)^2}$ En déduire que : $G(x) = \int_0^x \frac{te^t}{(1+t)^2} dt$
- c) A l'aide d'une intégration par partie montrer que : $G(x) = e^x 1 \frac{xe^x}{1+x}$
- 4) Calculer l'aire de la partie limiter par $\,C_g, \, x=1$, x=e et y=0

Exercice 8

1) Soit g la fonction définie sur \mathbb{R} par $g(x) = (x - 1)e^x + 1$

Dresser le tableau de variation de g et déduire le signe de g(x)

2/ Soit f la fonction définie sur $[0, +\infty[$ par $\begin{cases} f(x) = \frac{e^x - 1}{x} \\ f(0) = 1 \end{cases}$ si x > 0

Pour tout $x \in \]0,1[$ et Pour tout $n \in \mathbb{N}$ on considère les fonctions

$$I_n(x) = \frac{1}{n!} \int_0^x (x-t)^n e^t dt \text{ et } S_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$$

a) Montrer que $0 \le I_n(x) \le \frac{x^{n+1}}{(n+1)!} e^x$ b) En déduire $\lim_{n \to +\infty} \frac{I_n(x)}{n}$ et $\lim_{n \to +\infty} I_n(x)$

<u>موقع مراجعة باكالوريا</u> BAC.MOURAJAA.COM

- 3/a) Montrer que $I_n(x) = \frac{x^{n+1}}{(n+1)!} + I_{n+1}(x)$
 - b) Montrer par récurrence que $I_n(x) + S_n(x) = e^x$ puis déduire $\lim_{n \to +\infty} S_n(x)$
- 4/a) Montrer que Pour tout $x \in]0,1[$ on a $\frac{e^x-1-x}{x^2} = \frac{I_2(x)}{x^2} + \frac{1}{2}$ puis déduire que f est dérivable en 0
 - b) Dresser le tableau de variation de f et tracer C_f

Exercice 9

Soit f la fonction définie sur \mathbb{R} par $f(x) = (x+1)^2 e^{-x}$ et (C) sa courbe représentative dans un repère orthonormé $(o, \overrightarrow{u}, \overrightarrow{v})$

- 1.a. Etudier f est tracer (C)
 - b. Soit $\alpha \in]-1+\infty[$ et $\mathcal{A}(\alpha)$ l'aire par unité d'aire de la partie du plan limité par (C) et les droites y=0, x=-1 et $=\alpha$.

Calculer $\mathcal{A}(\alpha)$ puis dterminer sa limite lorsque α tend vers $+\infty$

- 2. Soit $n \in \mathbb{N}^*$ et f_n la fonction définie sur $I = [-1 + \infty[$ par $f_n(x) = (x+1)^n e^{-x}$
 - a. Dresser le tableau de variation de f_n
 - b. En déduire que pour tout $x \in I$ on $a \in$
- 3. Soit g_n la fonction définie sur $J =]-1 + \infty[$ par $g_n(x) = \frac{1}{f_n(x)}$ Montrer que pour tout $x \in J$ on a $g'_n(x) = g_n(x) - ng_{n+1}(x)$
- 4. Soit $(I_n)_{n\in\mathbb{N}^*}$ la suite définie par $I_n=\int_0^1g_n(\mathbf{x})\mathrm{d}\mathbf{x}$
- a. Montrer que (I_n) est décroissante minorée
- b. Montrer que pour tout $n \in \mathbb{N}^* \{1\}$ on a $\frac{1}{n-1} \left(1 \frac{1}{2^{n-1}}\right) \le I_n \le \frac{e}{n-1} \left(1 \frac{1}{2^{n-1}}\right)$

Puis déduire la limite de I_n

c. Montrer que pour tout $n \in \mathbb{N}^*$ on a $I_n = nI_{n+1} - 1 + \frac{e}{2^n}$.5d.Déterminer $\lim_{n \to +\infty} nI_{n+1}$ puis $\lim_{n \to +\infty} nI_n$

Exercice 10:

- I. Soit f la fonction définie sur]0, $+\infty$ [par f(x) = $\frac{e^{-x}}{x}$ 1. Etudier f et tracer C
- 2. On considère la suite ($\boldsymbol{U}_{\boldsymbol{n}}$) définie pour tout entier naturel n par :

$$\begin{cases} U_0 = 1 \\ {U_{n+1}} = {U_n}^2 f(U_n) = U_n e^{-U_n} \end{cases}$$

- a. Montrer que pour tout réel x, on a $e^x \ge x + 1$
- b. En déduire que pour tout réel x strictement positif, on a $x^2 f(x) \le \frac{x}{x+1}$
- c. Montrer par récurrence que pour tout $n \in \mathbb{N}$ on a : $0 < U_n \le \frac{1}{n+1}$
- d. Montrer que ($\boldsymbol{U}_{\boldsymbol{n}}$) est convergente et donner sa limite.
- 3. Pour tout entier naturel n non nul, on pose $v_n = \sum_{K=0}^{n-1} u_K$ Montrer que pour tout entier naturel n non nul, on a $v_n = \ln\left(\frac{1}{u_n}\right)$ puis déduire sa limite
- **II.** On considère la fonction F définie sur l'intervalle $[0, +\infty[$ par :

$$\begin{cases} F(x) = \int_{x^2}^{4x^2} f(t)dt \ x > 0 \\ F(0) = 2\ln(2) \end{cases}$$

<u>موقع مراجعة باكالوريا</u> BAC.MOURAJAA.COM

- 1. a Vérifier que pour tout réel x strictement positif, on a $\int_{x^2}^{4x^2} \frac{dt}{t} = 2\ln(2)$
 - b En utilisant l'inégalité de la question 2.a, montrer que pour tout réel t strictement positif,

on a
$$-t \le e^{-t} - 1 \le 0$$

- 2. a Montrer que pour tout réel x strictement positif, on a : $-3x^2 \le F(x) 2\ln(2) \le 0$
 - b En déduire que F est dérivable à droite de zéro.
- 3. a Montrer que pour tout réel $t \ge 1$, on a $f(t) \le e^{-t}$ puis déduire $\lim_{x \to \infty} F(x)$
- 4. a Montrer que F est dérivable sur $[0, +\infty[$ puis donner l'expression de F'(x)
 - b Dresser le tableau de variations de F et tracer sa courbe dans un repère orthonormé.

Exercice 11

- Soit f la fonction définie sur R par $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$ et et c_f sa courbe représentative
- 1) Dresser le tableau de variation de f
- 2) a. Montrer que f réalise une bijection de R sur un intervalle J que l'on précisera b. Expliciter $f^{-1}(x)$ et tracer c_f et $c_{f^{-1}}$
- 3) Soit $\lambda > 0$ et $A(\lambda)$ l'aire de la partie du plan limitée par c_f et les droites d'équations respectives

$$x = 0, x = \lambda$$
 et $y = 1$. Montrer que $A(\lambda) = \ln(2) - \ln(1 + e^{-2\lambda})$ puis déduire $\lim_{\lambda \to +\infty} A(\lambda)$

- 4) Soit x > 0 et $n \in \mathbb{N}^*$ on pose $F_0(x) = x$ et $F_n(x) = \int_0^x [f(t)]^n dt$
- a. Expliciter $F_1(x)$
- b. Montrer que $0 \le F_n(x) \le x[f(n)]^n$ puis déduire $\lim_{n \to +\infty} F_n(x)$
- c. Vérifier que pour tout $x \in \mathbb{R}$ on a $f'(x) = 1 [f(x)]^2$
- d. Montrer alors que pour tout $k \in \mathbb{N}$ on a $F_{k+2}(x) = F_k(x) \frac{1}{k+1} [f(x)]^{k+1}$
- e. Montrer que pour tout $n \in \mathbb{N}^*$ on a $F_{2n}(x) = x \sum_{k=1}^n \frac{1}{2k-1} [f(x)]^{2k-1}$
- 5) Soit $n \in \mathbb{N}^*$ on pose $S_n = \sum_{n=1}^n \frac{1}{(2k-1)3^{2k-1}} \text{calculer } \lim_{n \to +\infty} S_n$

Exercice 12

- Soit f la fonction définie sur R par $f(x) = \ln(1 + e^{-x})$ et \mathcal{C} sa courbe représentative dans un repère orthonormé $\left(0, \vec{i}, \vec{j}\right)$
- 1) a. Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$
 - b. Vérifier que f(-x) f(x) = x et déduire que la droite Δ : y = -x est une asymptote a \mathcal{C}
 - c. Dresser le tableau de variation de f et tracer $\mathcal C$
 - d. Montrer que f réalise une bijection de R sur un intervalle J et expliciter $f^{-1}(x)$
- 2) Soit g la fonction définie sur R par $g(x) = \int_0^x f(t) dt$
 - a. Montrer que g est dérivable sur R et calculer g'(x)
 - b. Montrer que pour tout $x \in \mathbb{R}$ on a $g(-x) = -\frac{x^2}{2} g(x)$
- 3) Soit F la fonction définie sur R par $F(x) = \frac{g(x)}{x}$ si $x \neq 0$ et $F(0) = \ln(2)$ et Γ sa courbe représentative dans un repère orthonormé $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$
- a. Montrer que pour tout $t \ge 0$ on a $\ln(1+t) \le t$
- b. En déduire que pour tout x > 0 on a $0 \le F(x) \le \frac{1 e^{-x}}{x}$, déduire $\lim_{x \to +\infty} F(x)$
- c. Montrer que pour tout $x \in \mathbb{R}^*$ on a $F(-x) = \frac{x}{2} + F(x)$
- d. Calculer $\lim_{x\to -\infty} F(x)$ et montrer que la droite Δ' : $y=-\frac{x}{2}$ est une asymptote a Γ
- 4) a. A l'aide d'une intégration par

$$f(t) = f(0) + tf'(0) + \int_{0}^{t} (t - a)f''(a)da$$

- b. Montrer que pour tout $x \in R$ on a $0 \le f''(x) \le 1$
- c. En déduire que pour tout x > 0 on a $0 \le F(x) Ln(2) + \frac{x}{4} \le \frac{1}{6}x^2$
- d. En utilisant 3)c) montrer que l'inégalité présidente reste vraie pour x < 0
- e. Montrer alors F est dérivable en 0 et calculer F'(0)
- 5) a. Montrer que F est dérivable sur R* et que pour tout $x \in R^*$ on a xF'(x) = f(x) F(x)
 - b. Montrer que F pour tout $x \in \mathbb{R}^*$ on a $g(x) = xf(x) + \int_{x}^{x} \frac{te^{-t}}{1+e^{-t}} dt$
 - c. Montrer que pour tout $x \in \mathbb{R}$ on a $\int_{0}^{x} \frac{te^{-t}}{1+e^{-t}} dt \ge 0$
- e. Dresser le tableau de variation de F et tracer Γ en précisera la tangente au point d'abscisse 0

Exercice 13

Soit f la fonction définie sur $[0, +\infty[$ par $\begin{cases} f(x) = \left(1 + \frac{1}{x}\right)e^{-\frac{1}{x}} \\ f(0) = 0 \end{cases}$ si x > 0 et C sa courbe représentative

- 1. a. Montrer que f est dérivable a droite en 0
 - b. Dresser le tableau de variation de f
 - c. Montrer que pour tout $x \in]0, +\infty[$ on a $f''(x) = \frac{(1-3x)e^{\frac{x}{x}}}{x^5}$
 - d. On déduire que C présente un point d'inflexion et tracer C
- 2. Soit F la fonction définie sur $[0, +\infty[$ par $]0, +\infty[$ $F(x) = \int_{x}^{1} f(t) dt$
 - a. Montrer que F est continue sur $[0, +\infty]$
 - b. A l'aide d'une intégration par partie montrer que pour tout $x \in]0, +\infty[$ on a

$$\int_{x}^{1} e^{-\frac{1}{t}} dt = \frac{1}{e} - xe^{-\frac{1}{x}} - \int_{x}^{1} \frac{1}{t} e^{-\frac{1}{t}} dt$$

- c. En déduire l'expression de F(x) pour tout $x \in [0, +\infty]$
- d. calculer l'aire de la partie du plan limiter par C et les droites d'équation respective x = 0, x = 1 et y = 0
- 3. a. Soit n un entier naturel non nul . Montrer que l'équation $f(x) = e^{-\frac{1}{n}}$ admet une unique solution a_n
 - b. Vérifier que $-\frac{1}{a_n} + ln\left(1 + \frac{1}{a_n}\right) = -\frac{1}{n}$
- 4. a. Montrer que pour tout $t \in [0, +\infty[$ on a $1-t \le \frac{1}{1+t} \le 1-t+t^2$
 - b. En déduire que $x \in [0, +\infty[$ on $a \frac{x^2}{2} \le ln(1+x) x \le -\frac{x^2}{2} + \frac{x^3}{3}$
- 5. Soit n un entier naturel supérieur ou égal a 4
- a. Vérifier que $a_4 \ge 1$ puis déduire que $a_n \ge 1$
- b. Montrer que $1-\frac{2}{3a_n} \leq \frac{2a_n^2}{n} \leq 1$ puis que $a_n \geq \sqrt{\frac{n}{6}}$. En déduire la limite de a_n

