Exercice 1

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^{2x}}{1+e^x}$.

On désigne par C_f la courbe représentative de f dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$ du plan.

- **A**)1) Dresser le tableau de variation de f.
 - 2)a) Déterminer les branches infinies de C_f .
 - b) Tracer C_f.
 - 3)a) Montrer que f est une bijection de \mathbb{R} sur \mathbb{R}_{+}^{*} .
 - b) Tracer la courbe $C_{F^{-1}}$.
 - c) Expliciter $f^{-1}(x)$ pour tout x > 0.
 - 4)a) Vérifier que pour tout réel x on a $f(x) = e^x \frac{e^x}{1+e^x}$.
 - b) Soit λ un réel strictement négatif.

Calculer l'aire $A(\lambda)$ du domaine limité par $C_{f^{-1}}$, l'axe des ordonnées et les droites d'équations respectives : $y=\lambda$ et y=0.

- **B**) Pour tout entier naturel non nul n et pour tout réel négatif x, on pose $F_n(x) = \int_x^0 \frac{e^{nt}}{1+e^t} dt$.
 - 1)a) Calculer $F_1(x)$ et déduire que $\lim_{x\to -\infty} F_1(x) = \ln 2$.
 - b) Calculer $\lim_{x\to -\infty} F_2(x)$.
- 2)a) Montrer que pour tout entier naturel non nul n, on a $F_{n+1}(x) + F_n(x) = \frac{1}{n}(1 e^{nx})$.
 - b) Montrer par récurrence sur n, que $F_n(x)$ admet une limite finie lorsque x tend vers $-\infty$.

Dans la suite on pose $R_n = \lim_{x \to -\infty} F_n(x)$.

- 3)a) Vérifier que pour tout $t \le 0$, $2e^t \le 1 + e^t \le 2$.
 - b) Montrer que pour tout entier naturel $n \ge 2$ et pour tout $x \le 0$, on a :

$$\frac{1}{2n} \left(1 - e^{nx} \right) \le F_n(x) \le \frac{1}{2(n-1)} \left(1 - e^{(n-1)x} \right).$$

- c) En déduire un encadrement de R_n pour tout $n \ge 2$.
- 4) Pour tout réel négatif x et pour tout entier naturel non nul n, on pose $G_n(x) = (-1)^n \int_x^0 e^{nt} dt$.
 - a) Calculer $G_n(x)$ et montrer que $\lim_{x \to -\infty} G_n(x) = \frac{(-1)^n}{n}$.
 - b) Montrer que $G_1(x) + G_2(x) + \dots + G_n(x) = -F_1(x) + (-1)^n F_{n+1}(x)$.
- 5) On pose, pour tout entier naturel non nul n, $U_n = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}$.
 - a) Montrer que $U_n = \ln 2 + (-1)^{n+1} R_{n+1}$.
 - b) Montrer que la suite (U_n) converge et trouver sa limite.

