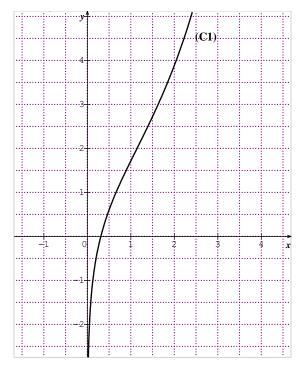
Lycée pilote de Tunis	Fonctions exponentielles 1	Terminales Maths
Mr Ben Regaya. A	+ Eléments de corrections	www.ben-regaya.net

Exercice 1

n désigne un naturel non nul, soit φ_n la fonction définie sur $]0,+\infty[$ par $\varphi_n(x)=\frac{e^x-1}{x}+n\ln x$. On désigne par C_n la courbe représentative de φ_n dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$. Unité 2 cm.

- 1. a) Montrer que pour tout réel x, $1+(x-1)e^x \ge 0$.
 - b) Etudier alors les variations de φ_n .
- 2. a) Etudier la position relative de C_n et C_{n+1} .
 - b) Etudier la nature des branches infinies de C_n .
 - c) On donne ci-dessous la courbe C_1 . Construire C_2 .
- 3. a) Pour tout naturel n non nul, montrer qu'il existe un unique réel $t_n \in]0,1[$ tel que $\varphi_n(t_n) = 0$.
 - b) Montrer que pour tout naturel n non nul, $\varphi_{n+1}(t_n) = ln(t_n)$.
 - c) En déduire la monotonie de la suite (t_n) , puis sa convergence.
- 4. a) En utilisant la question 1., montrer que si $x \in]0,1], \frac{e^x 1}{x} \le e$.
 - b) En déduire que pour tout naturel n non nul, $ln(t_n) \ge -\frac{e}{n}$ et conclure sur la limite de la suite (t_n) .



Exercice 2

On considère la fonction f, définie $\sup[1,+\infty[$ par $f(t)=\frac{e^t}{t}$. (C) la courbe représentant f dans un repère orthogonal.

- 1. a) Justifier la continuité de $f \sup [1, +\infty]$.
 - b) Montrer que f est strictement croissante sur $[1,+\infty[$.
 - c) Etudier f et tracer (C).
- 2. Pour tout réel x_0 de $[1, +\infty[$, on note $A(x_0)$ l'aire du domaine délimité par la courbe représentant f, l'axe des abscisses et les droites d'équations x = 1 et $x = x_0$.
 - a) Que vaut A(1)?
 - b) Soit x_0 un réel quelconque de $[1,+\infty[$ et h un réel strictement positif. Justifier l'encadrement suivant :

$$f(x_0) \le \frac{A(x_0+h) - A(x_0)}{h} \le f(x_0+h).$$

- c) Lorsque $x_0 \ge 1$, quel encadrement peut-on obtenir pour h < 0 et tel que $x_0 + h \ge 1$?
- d) En déduire la dérivabilité en x_0 de la fonction A ainsi que le nombre dérivé en x_0 de la fonction A.
- e) Conclure.

Exercice 3

On considère la fonction f définie sur $]0,+\infty[$ par $: f(x)=1+ln^2x$. On note (C) la courbe représentative de f dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 1. Etudier les variations de f puis tracer (C).
- 2. a) Soit $a \in [0,1]$, calculer A_a l'aire de la partie du plan limitée par les droites x = 1, x = a, y = 0 et (C).
 - b) Calculer $\lim_{a\to 0} A_a$.
- 3. Soit g la restriction de f sur [0,1].
 - a) Montrer que g réalise une bijection de]0,1] sur un intervalle J que l'on précisera. Tracer la courbe (C') de g^{-1} dans le même repère.
 - b) Expliciter $g^{-1}(x)$ pour $x \in J$.
- 4. Soit $x \in]0,1]$, on note $I(x) = \int_0^1 (1-t)e^{tx}dt$, $J(x) = \int_0^1 (1-t)^2 e^{tx}dt$ et $h(x) = \frac{e^x 1 x}{x^2}$.
 - a) Montrer que pour tout $x \in]0,1], \ \frac{1}{3} \le J(x) \le \frac{e}{3}$. En déduire $\lim_{x \to 0^+} x J(x)$
 - b) Montrer que pour tout $x \in [0,1]$, xJ(x) = 2I(x) 1.
 - c) Montrer que pour tout $x \in]0,1]$, I(x) = h(x). En déduire $\lim_{x \to 0^+} h(x)$.
- 5. Soit φ la fonction définie sur $[1, +\infty[$ par $\varphi(x) = -2(\sqrt{x-1}+1)e^{-\sqrt{x-1}}$.
 - a) Montrer que pour tout réel $x \in]1,2]$, $\frac{\varphi(x)-\varphi(1)}{x-1} = 2e^{-\sqrt{x-1}}h(\sqrt{x-1})$.
 - b) En déduire que φ est dérivable en 1 et calculer $\varphi'(1)$.
 - c) Montrer que φ est dérivable sur $[1,+\infty[$ et calculer $\varphi'(x)$. Déduire la valeur de $\int_1^2 g^{-1}(x) dx$.

Lycée pilote de Tunis	Fonctions exponentielles 1	Terminales Maths
Mr Ben Regaya. A	Eléments de corrections	www.ben-regaya.net

Exercice 1

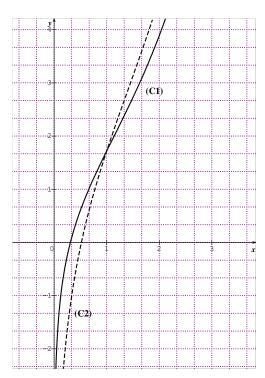
- 1. a) $\varphi(x) = 1 + (x-1)e^x \varphi$ est dérivable sur \mathbb{R} et $\varphi'(x) = e^x + (x-1)e^x = xe^x$ donc $\varphi'(x) = 0 \Leftrightarrow x = 0$ $\varphi'(x) \succ 0 \Leftrightarrow x \succ 0$. φ' s'annule en 0 et change de signe en allant du (-) vers le (+) donc φ admet sur \mathbb{R} un minimum absolu égal $\varphi(0) = 1 + (0-1)e^0 = 0$. Donc pour tout réel x, $\varphi(x) \ge 0$ ou encore pour tout réel x, $1 + (x-1)e^x \ge 0$.
 - b) φ_n définie sur $]0, +\infty[$ par $\varphi_n(x) = \frac{e^x 1}{x} + n \ln x \cdot \varphi_n$ dérivable sur $]0, +\infty[$ comme quotient et somme de fonctions dérivables et $\varphi_n(x) = \frac{xe^x (e^x 1)}{x^2} + \frac{n}{x} = \frac{xe^x e^x + 1}{x^2} + \frac{n}{x} = \frac{1 + (x 1)e^x}{x^2} + \frac{n}{x} = \frac{\varphi(x)}{x^2} + \frac{n}{x} > 0$ puisque $\varphi(x) > 0$ sur $]0, +\infty[$ et que pour n naturel $\frac{n}{x} > 0$.
- 2. a) $\varphi_{n+1}(x) \varphi_n(x) = \frac{e^x 1}{x} + (n+1)\ln x \left(\frac{e^x 1}{x} + n\ln x\right) = \ln x$ donc sur]0,1[, C_n est au dessus de C_{n+1} . et sur $]1,+\infty[$ C_n est en dessous de C_{n+1} .
 - b) $\lim_{x\to 0^+} \varphi_n(x) = \lim_{x\to 0^+} \frac{e^x 1}{x} + n \ln x = -\infty$ car $\lim_{x\to 0^+} \frac{e^x 1}{x} = 0$ donc la droite x = 0 est asymptote à C_n à droite en 0.

$$\lim_{x \to +\infty} \varphi_n(x) = \lim_{x \to +\infty} \frac{e^x - 1}{x} + n \ln x = \lim_{x \to +\infty} \frac{e^x}{x} - \frac{1}{x} + n \ln x = +\infty$$

$$\lim_{x\to +\infty}\frac{\varphi_n\left(x\right)}{x}=\lim_{x\to +\infty}\frac{e^x}{x^2}-\frac{1}{x^2}+n\frac{\ln x}{x}=+\infty \text{ car }\lim_{x\to +\infty}\frac{e^x}{x^2}=+\infty \text{ et }\lim_{x\to +\infty}\frac{\ln x}{x}=0 \text{ .}$$

Donc C_n admet au voisinage de $+\infty$ une branche infinie parabolique de direction (O, \vec{j}) .

c)



3. φ_n est continue et elle est strictement croissante sur $]0, +\infty[$ donc elle réalise une bijection de cet intervalle sur son image $\varphi_n \langle]0, +\infty[\rangle =]-\infty, +\infty[= \mathbb{R}. \ 0 \in \varphi_n \langle]0, +\infty[\rangle]$ donc il existe un unique réel t_n tel que $\varphi_n(t_n) = 0$.

$$\varphi_{\scriptscriptstyle n}\left\langle \left]0,1\right[\right\rangle = \left|\lim_{x\to 0^+}\varphi_{\scriptscriptstyle n}(x),\varphi_{\scriptscriptstyle n}(1)\right[= \left]-\infty,e-1\right[\text{ et comme } 0\in\varphi_{\scriptscriptstyle n}\left\langle \left]0,1\right[\right\rangle \text{ alors } t_{\scriptscriptstyle n}\in\left]0,1\right[.$$

b) Montrons que pour tout naturel n non nul, $\varphi_{n+1}(t_n) = ln(t_n)$.

$$\varphi_{n+1}(t_n) = \frac{e^{t_n} - 1}{t_n} + (n+1)lnt_n = \frac{e^{t_n} - 1}{t_n} + nln(t_n) + ln(t_n) = \varphi_n(t_n) + ln(t_n) = ln(t_n) \operatorname{car} \varphi_n(t_n) = 0.$$

c) On a $\varphi_{n+1}(t_n) = ln(t_n)$ et $t_n \in]0,1[$ donc $ln(t_n) \prec 0$ et par suite $\varphi_{n+1}(t_n) \prec 0$ et comme $\varphi_{n+1}(t_{n+1}) = 0$ alors on aura $\varphi_{n+1}(t_n) \prec \varphi_{n+1}(t_{n+1})$ et vu que φ_{n+1} est strictement décroissante sur $]0,+\infty[$ et que les termes de la suite (t_n) sont dans]0,1[alors $t_n \prec t_{n+1}$. La suite (t_n) est alors croissante.

La suite (t_n) est alors croissante et elle est majorée par 1 donc elle converge.

4. a) On a pour tout réel x, $1 + (x-1)e^x \ge 0 \Leftrightarrow 1 + xe^x - e^x \ge 0 \Leftrightarrow e^x - 1 \le xe^x \Leftrightarrow \frac{e^x - 1}{x} \le e^x$, x étant strictement

positif. Mais si $x \in [0,1]$, $e^x \le e^1$ par croissance de la fonction exponentielle, on conclut alors que si

$$x \in]0,1], \frac{e^x - 1}{x} \le e.$$

$$\varphi_{n+1}\left(t_{n}\right) = ln\left(t_{n}\right) \Leftrightarrow \frac{e^{t_{n}}-1}{t_{n}} + \left(n+1\right)lnt_{n} = ln\left(t_{n}\right) \Leftrightarrow \frac{e^{t_{n}}-1}{t_{n}} = -n \ln\left(t_{n}\right) \text{ et comme } t_{n} \in \left]0,1\right[\text{ alors } \frac{e^{t_{n}}-1}{t_{n}} \leq e^{t_{n}} + \left(n+1\right)lnt_{n} = ln\left(t_{n}\right) \Leftrightarrow \frac{e^{t_{n}}-1}{t_{n}} = -n \ln\left(t_{n}\right) \text{ et comme } t_{n} \in \left]0,1\right[\text{ alors } \frac{e^{t_{n}}-1}{t_{n}} \leq e^{t_{n}} + \left(n+1\right)lnt_{n} = ln\left(t_{n}\right) \Leftrightarrow \frac{e^{t_{n}}-1}{t_{n}} = -n \ln\left(t_{n}\right) \text{ et comme } t_{n} \in \left]0,1\right[\text{ alors } \frac{e^{t_{n}}-1}{t_{n}} \leq e^{t_{n}} + \left(n+1\right)lnt_{n} = ln\left(t_{n}\right) \Leftrightarrow \frac{e^{t_{n}}-1}{t_{n}} = -n \ln\left(t_{n}\right) \Leftrightarrow \frac{e^{t_{n}}-1}{t_{n}} \leq e^{t_{n}} + \left(n+1\right)lnt_{n} = ln\left(t_{n}\right) \Leftrightarrow \frac{e^{t_{n}}-1}{t_{n}} \leq e^{t_{n}} + ln\left(t_{n}\right)lnt_{n} = ln\left($$

ce qui nous donne $-n \ln(t_n) \le e$ ou encore pour tout naturel n non nul, $\ln(t_n) \ge -\frac{e}{n}$.

 $t_n \in \left]0,1\right[\text{donc } \ln\left(t_n\right) \prec 0 \text{ ce qui nous donne l'encadrement } -\frac{e}{n} \leq \ln\left(t_n\right) \prec 0 \text{ et comme } \lim_{n \to +\infty} -\frac{e}{n} = 0 \text{ alors par comparaison } \lim_{n \to +\infty} t_n = 0 \text{ .}$

Exercice 2

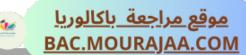
- 1. a) f est continue sur $[1,+\infty[$ comme quotient de fonctions continues.
 - b) $f'(t) = \frac{e^t t e^t}{t^2} = \frac{e^t (t 1)}{t^2}$; les réels e^t et t^2 sont évidemment positifs, t 1 l'est également lorsque $t \ge 1$.

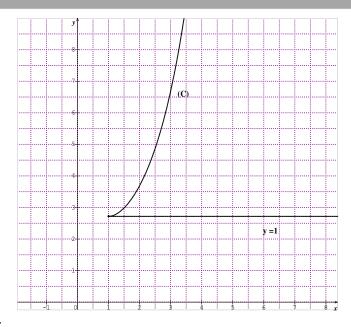
Donc f est strictement croissante sur $[1, +\infty]$.

 $\lim_{t \to +\infty} \frac{f(t)}{t} = \lim_{t \to +\infty} \frac{e^t}{t^2} = +\infty \text{ résultat directe de cours . (C) admet au voisinage de } +\infty \text{ une branche infinie}$

parabolique de direction (O, \hat{j}) .

c)





- 2. a) A(1) vaut 0.
 - b) Sur $[1,+\infty[$ f est strictement croissante ainsi que A. La différence $A(x_0+h)-A(x_0)$ représente l'aire de la bande sous la courbe de f, comprise entre les droites $x=x_0$ et $x=x_0+h$: cette bande a une aire supérieure à celle du rectangle de hauteur $f(x_0)$ et de largeur h, et inférieure à celle du rectangle de hauteur $f(x_0+h)$ et de largeur h. On a donc

$$hf(x_0) \le A(x_0 + h) - A(x_0) \le f(x_0 + h)h$$

d'où l'encadrement demandé en divisant par h puisque h est positif.

c) Si on prend h < 0, ça ne change pas grand-chose sur le fond, il y a surtout des questions de signes à respecter : la bande sous la courbe de f a pour aire $A(x_0) - A(x_0 + h)$, le rectangle inférieur a pour aire $f(x_0 + h)(-h)$ et le rectangle supérieur a pour aire $f(x_0)(-h)$; on a donc

$$(-h)f(x_0+h) \le A(x_0) - A(x_0+h) \le (-h)f(x_0) \Leftrightarrow hf(x_0+h) \le A(x_0+h) - A(x_0) \le hf(x_0), \text{ soit}$$

$$f(x_0+h) \ge \frac{A(x_0+h) - A(x_0)}{h} \ge f(x_0)$$

en divisant par h (attention au changement de sens des inégalités : h est négatif).

- d) On a le même encadrement pour h positif ou négatif, on peut passer à la limite lorsque h tend vers 0, ce qui donne $f(x_0) \ge \lim_{h \to 0} \frac{A(x_0 + h) A(x_0)}{h} \ge f(x_0) \Longrightarrow A'(x_0) = f(x_0)$ puisqu'on retrouve le nombre dérivé de A au milieu de l'encadrement.
- e) Conclusion du cours : l'aire sous la courbe de f entre x = 1 et $x = x_0$ est obtenue en trouvant une primitive de f (la fonction A) telle que A(1) = 0.

Exercice3

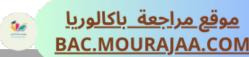
1. la fonction $\ln f$ étant dérivable sur $]0,+\infty[$ il en est de même pour f et $f'(x)=2\frac{\ln x}{x}$. Le signe de f'(x) sur $]0,+\infty[$ est celui de $\ln x$.

Ainsi $f'(x) = 0 \Leftrightarrow x = 1$, f est strictement croissante sur $[1, +\infty[$ et strictement décroissante ailleurs.

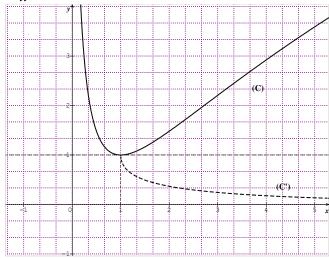
 $\lim_{x\to 0^+} f(x) = +\infty$ donc la droite des ordonnées est une asymptote à (C) a droite en 0.

 $\lim_{x \to +\infty} f(x) = +\infty.$

Nature de la branche infinie au voisinage de $+\infty$.



 $\lim_{x\to +\infty} \frac{f(x)}{x} = \lim_{x\to +\infty} \frac{1}{x} + \frac{\ln^2 x}{x} = 0 \text{ donc (C) admet une branche infinie parabolique de direction } \left(O, \vec{i}\right).$



2. a) Le minimum de f sur $]0,+\infty[$ est 1 donc f est toujours positive sur $]0,+\infty[$ donc

$$A_a = \int_a^1 f(x) dx = (1-a) + \int_a^1 ln^2(x) dx$$

Intégrons par parties $\int_{a}^{1} ln^{2}(x) dx$

Posons
$$\begin{cases} u(x) = \ln^2 x \\ v'(x) = 1 \end{cases} \quad \text{donc} \begin{cases} u'(x) = 2\frac{\ln x}{x} \\ v(x) = x \end{cases}.$$

Les fonctions étant continues sur $]0,+\infty[$ donc

$$\int_{a}^{1} \ln^{2}(x) dx = \left[x \ln^{2} x \right]_{a}^{1} - 2 \int_{a}^{1} \ln(x) dx = -a \ln^{2} a - \left[x \ln x - x \right]_{a}^{1} = -a \ln^{2} a + 1 + a \ln a - a$$

Ainsi
$$A_a = (1-a) + \int_a^1 \ln^2(x) dx = 2 - 2a - a \ln^2 a + a \ln a$$

b)
$$\lim_{a\to 0^+} A_a = \lim_{a\to 0^+} 2 - 2a - a \ln^2 a + a \ln a = 2$$
.

3. a) g la restriction de f sur]0,1]. g est continue et elle est strictement décroissante sur]0,1] donc elle réalise une bijection de cet intervalle sur son image $J=[1,+\infty[$. La réciproque de g existe et elle est définie sur $[1,+\infty[$. La courbe (C') de g^{-1} est symétrique de (C) par-rapport à Δ : y=x.

b) On a
$$x \in [1, +\infty[$$
 et $y \in]0,1]$

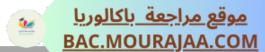
$$g(y) = x \Leftrightarrow 1 + \ln^2 y = x \Leftrightarrow \ln^2 y = x - 1 \Leftrightarrow \ln y = \pm \sqrt{x - 1} \text{ or } y \in [0, 1] \text{ donc } \ln y \leq 0 \text{ et donc}$$

$$lny = -\sqrt{x-1} \Leftrightarrow y = e^{-\sqrt{x-1}}$$
. D'où pour $x \in J$, $g^{-1}(x) = e^{-\sqrt{x-1}}$.

4. a) On $x \in]0,1]$ et $t \in [0,1]$ donc $0 \le t$ $x \le 1 \iff 1 \le e^{tx} \le e$ par croissance de la fonction exponentielle sur \mathbb{R} .

Pour
$$t$$
 réel $(1-t)^2 \ge 0$ donc en multipliant la dernière inégalité devient : $(1-t)^2 \le e^{tx} (1-t)^2 \le e(1-t)^2$

la continuité des fonctions et la positivité de l'intégrale permettent :



$$\int_0^1 (1-t)^2 dt \le \int_0^1 e^{tx} (1-t)^2 dt \le e \int_0^1 (1-t)^2 dt \iff \int_0^1 (1-t)^2 dt \le J(x) \le e \int_0^1 (1-t)^2 dt$$

Or
$$\int_0^1 (1-t)^2 dt = \left[-\frac{1}{3} (1-t)^3 \right]_0^1 = \frac{1}{3}$$
. Ainsi $\frac{1}{3} \le J(x) \le \frac{e}{3}$. C'est le résultat demandé.

On a : $\frac{1}{3} \le J(x) \le \frac{e}{3}$ et pour $x \in]0,1]$, $\frac{1}{3}x \le xJ(x) \le \frac{e}{3}x$. Par le théorème de comparaison $\lim_{x\to 0^+} xJ(x) = 0$.

b)
$$xJ(x) = \int_0^1 (1-t)^2 xe^{tx} dt$$

Intégrons par parties

$$\begin{cases} u(t) = (1-t)^2 \\ v'(t) = xe^{tx} \end{cases} \text{ donc } \begin{cases} u'(t) = -2(1-t) \\ v(t) = e^{tx} \end{cases}$$

les fonctions étant continues sur \mathbb{R} donc $xJ(x) = \left[(1-t)^2 e^{tx} \right]_0^1 + 2 \int_0^1 (1-t)e^{tx} dt$

 $\Leftrightarrow xJ(x) = -1 + 2\int_0^1 (1-t)e^{tx}dt = -1 + 2I(x)$ c'est ce qu'on demande d'établir.

c)
$$I(x) = \int_0^1 (1-t)e^{tx}dt$$
.

Intégrons toujours par parties

$$\begin{cases} u(t) = (1-t) \\ v'(t) = e^{tx} \end{cases} \text{ donc } \begin{cases} u'(t) = -1 \\ v(t) = \frac{1}{x}e^{tx} \end{cases}$$

Les fonctions étant continues sur R donc

$$I(x) = \left[\left(1 - t \right) \frac{1}{x} e^{tx} \right]_0^1 + \frac{1}{x} \int_0^1 e^{tx} dt = -\frac{1}{x} + \frac{1}{x} \left[\frac{1}{x} e^{tx} \right]_0^1 = -\frac{1}{x} + \frac{1}{x^2} \left(e^x - 1 \right) = \frac{e^x - 1 - x}{x^2}.$$

Ainsi pour tout $x \in [0,1]$, I(x) = h(x).

On a pour tout $x \in]0,1]$, $xJ(x) = 2I(x) - 1 \Leftrightarrow I(x) = \frac{1}{2}(xJ(x) + 1)$ et comme $\lim_{x \to 0^+} xJ(x) = 0$ alors

$$\lim_{x \to 0^+} I(x) = \frac{1}{2}$$
 ce qui donne $\lim_{x \to 0^+} h(x) = \frac{1}{2}$.

5. a)
$$\frac{\varphi(x) - \varphi(1)}{x - 1} = \frac{-2(\sqrt{x - 1} + 1)e^{-\sqrt{x - 1}} + 2}{x - 1} = 2\frac{-(\sqrt{x - 1})e^{-\sqrt{x - 1}} - e^{-\sqrt{x - 1}} + 1}{x - 1}$$

$$= 2e^{-\sqrt{x-1}} \times \frac{-(\sqrt{x-1}) - 1 + e^{\sqrt{x-1}}}{x-1}$$

Or
$$h(\sqrt{x-1}) = \frac{e^{(\sqrt{x-1})} - 1 - (\sqrt{x-1})}{(\sqrt{x-1})^2} = \frac{e^{(\sqrt{x-1})} - 1 - (\sqrt{x-1})}{(x-1)}$$

Ainsi
$$\frac{\varphi(x) - \varphi(1)}{x - 1} = 2e^{-\sqrt{x - 1}}h\left(\sqrt{x - 1}\right)$$
.

b)
$$\lim_{x \to 1} \frac{\varphi(x) - \varphi(1)}{x - 1} = \lim_{x \to 1} 2e^{-\sqrt{x - 1}} h\left(\sqrt{x - 1}\right) = 1 \text{ car } \lim_{x \to 1} 2e^{-\sqrt{x - 1}} = 2 \times 1 = 2 \text{ et } \lim_{x \to 1} \sqrt{x - 1} = 0 \text{ et}$$

$$\lim_{x \to 0^+} h(x) = \frac{1}{2} \text{ donc par composée } \lim_{x \to 1} h\left(\sqrt{x-1}\right) = \frac{1}{2}.$$

موقع مراجعة باكالوريا BAC.MOURAJAA.COM

Donc φ est dérivable en 1 et $\varphi'(1) = 1$.

c) La fonction $x\mapsto x-1$ est polynôme dérivable sur $\mathbb R$ et strictement positive sur $]1,+\infty[$ donc la fonction $x\mapsto \sqrt{x-1}$ est dérivable sur cet intervalle comme la fonction exponentielle est dérivable sur $\mathbb R$ alors φ est dérivable sur $]1,+\infty[$ et comme elle est dérivable à droite en 1 alors φ est dérivable sur $[1,+\infty[$.

$$\varphi'(x) = -2\left(\frac{1}{2\sqrt{x-1}}e^{-\sqrt{x-1}} + \left(\sqrt{x-1}+1\right) \times \frac{-1}{2\sqrt{x-1}}e^{-\sqrt{x-1}}\right)$$
$$= -2\left(\frac{1}{2\sqrt{x-1}}e^{-\sqrt{x-1}} - \frac{1}{2}e^{-\sqrt{x-1}} - \frac{1}{2\sqrt{x-1}}e^{-\sqrt{x-1}}\right) = e^{-\sqrt{x-1}}$$

Ainsi pour tout réel x de $[1,+\infty[\varphi'(x) = g^{-1}(x)]$.

On vient de prouver que pour tout réel x de $\left[1,+\infty\right[\varphi'(x)=g^{-1}(x) \text{ donc } \varphi \text{ est une primitive sur}\left[1,+\infty\right[\text{ de } g^{-1}\text{ et donc } \int_{1}^{2}g^{-1}(x)\,dx=\varphi(2)-\varphi(1).$

