Exercice (1)

Soit f la fonction définie sur $\left[0,+\infty\right[$ par : $f(x)=x\left(\ln x\right)^2-\left(x-1\right)^2$; $x\neq 0$ f(0)=-1

- 1) a) montrer que f est continue sur $\left[0,+\infty\right[$
 - b) étudier la dérivabilité de f à droite de 0
- 2) calculer les limites $\lim_{x\to +\infty} f(x)$; $\lim_{x\to +\infty} \frac{f(x)}{x}$ et donner une interprétation géométrique
- 3) a) montrer que $(\forall x > 0) \ln x \le x 1$
 - b) calculer f'(x); f''(x) et vérifier que f'(1) = 0
 - c) déduire le signe de f'(x) puis dresser le tableau de variation de f
- 4) construire la courbe da la fonction f

Exercice (2)

Partie (1) soit g la fonction définie par : $g(x) = x - (1+x)\ln(1+x)$

- 1) déterminer D_g et calculer $\lim_{x \to +\infty} g(x)$; $\lim_{\substack{x \to -1 \\ x > -1}} g(x)$
- 2) calculer g'(x) et donner le tableau de variation de g
- 3) déduire le signe de g(x) (remarquer que g(0) = 0)

Partie (2)

on considère la fonction f définie sur $[-1,+\infty[$ par : $\begin{cases} f(x) = \frac{x}{\ln(1+x)} & x \neq 0 ; x \neq -1 \\ f(0) = 1 ; f(-1) = 0 \end{cases}$

- 1) a) montrer f que au point 0 et à droite de -1
 - b) étudier la dérivabilité de f à droite de -1
- 2) a) montrer que $(\forall x \ge 0)$ $x \frac{x^2}{2} \le \ln(1+x) \le x \frac{x^2}{2} + \frac{x^3}{3}$

étudier la dérivabilité de f à droite de 0

b) soit x un réel de -1,0 et on considère la fonction φ définie sur -1,0 par :

$$\varphi(t) = t^2 (x - \ln(1+x)) - x^2 (t - \ln(1+t))$$
 . Montrer que :

 $(\exists c \in]x, 0[)$ $\frac{x - \ln(1 + x)}{x^2} = \frac{1}{2(1 + c)}$ puis étudier la dérivabilité de f à gauche de 0

- 3) montrer que $\lim_{x \to +\infty} f(x) = +\infty$ et étudier la branche infinie de (C_f) au voisinage de $+\infty$
- 4) a) montrer que : $(\forall x \in]-1, +\infty[-\{0\}]$; $f'(x) = \frac{-g(x)}{(1+x)(\ln(1+x))^2}$
 - b) dresser le tableau de variation de f
- 5) étudier la position de (C_f) par apport à (Δ) y = x et construire la courbe (C_f)

Exercice (3)

Soit *n* un entier de \mathbb{N}^* . On considère la fonction f_n définie par : $f_n(x) = nx + \ln x$

1) a) calculer les limites $\lim_{x \to +\infty} f_n(x)$ et $\lim_{x \to 0} f_n(x)$

- b) étudier la branche infinie de (C_f) au voisinage de $+\infty$
- 2) étudier le sens de variation de f_n et construire la courbe (C_1)
- 3) a) montrer que l'équation $f_n(x) = 0$ une seule solution u_n et que $(\forall n \in \mathbb{N}^*)$ $u_n < 1$
 - b) montrer que $f_n(u_{n+1}) = -u_{n+1}$, déduire la monotonie de la suite $(u_n)_n$
- 4) a) montrer que $(\forall x > 0)$ $x > \ln x$, déduire que $(\forall n \in \mathbb{N}^*)$ $u_n < \frac{1}{\sqrt{n}}$
 - b) déterminer $\lim_{n \to +\infty} u_n$; $\lim_{n \to +\infty} n u_n$ et montrer que $\lim_{n \to +\infty} \frac{n u_n}{\ln n} = 1$

Exercice (4)

Partie (1) soit g la fonction définie sur $]0,+\infty[$ par : $g(x) = -\frac{1}{x+1} + \ln\left(1 + \frac{1}{x}\right)$

- 1) calculer les limites $\lim_{x \to +\infty} g(x)$ et $\lim_{x \to 0^+} g(x)$
- 2) montrer que : $g'(x) = \frac{-1}{x(x+1)^2}$ et donner le tableau de variation de g
- 3) déduire que $(\forall x > 0)$ g(x) > 0

Partie (2)

Soit f la fonction définie sur $[0,+\infty[$ par : $f(x) = x \ln\left(1 + \frac{1}{x}\right)$; $x \neq 0$ et f(0) = 0

- 1) a) montrer que f est continue à droite de 0
 - b) montrer que $\lim_{\substack{x\to 0\\x>0}} \frac{f(x)}{x} = +\infty$ donner une interprétation géométrique du résultat
- 2) étudier la branche infinie de (C_f) au voisinage de $+\infty$
- 3) calculer f'(x) et étudier le sens de variation de f puis donner le tableau de variation
- 4) construire la courbe (C_f)

Partie (3) soit $(U_n)_{n>0}$ une suite telle que $U_n = \left(1 + \frac{1}{n}\right)^n$ et on pose $V_n = \ln U_n$

- 1) a) vérifier que $V_n = f(n)$ et déduire que $\left(U_n\right)_n$ est croissante
- b) montrer que $(\forall x > 0) \ln(1+x) < x$; déduire que $(\forall n \in \mathbb{N}^*) U_n < e$ puis calculer $\lim_{n \to +\infty} U_n$
- 2) on pose $S_n = \sum_{k=1}^{k=n} \frac{V_k}{k}$. exprimer S_n en fonction de n et déterminer $\lim_{n \to +\infty} S_n$; $\lim_{n \to +\infty} \frac{S_n}{\ln n}$

Exercice (5)

Soit f la fonction définie sur $\left[0, \frac{1}{e}\right] \cup \left[\frac{1}{e}, \infty\right]$ par : $f(x) = \frac{x}{1 + \ln x}$; $x \neq 0$ et f(0) = 0

- (C) la courbe de f dans un repère orthonormée $(O; \vec{i}; \vec{j})$
- 1) a) montrer que f st continue à droite de $x_0 = 0$
 - b) étudier la dérivabilité de f à droite de $x_0 = 0$

Mr Chahed

- 2) calculer les limites $\lim_{\substack{x \to \frac{1}{e} \\ x < \frac{1}{e}}} f(x)$ et $\lim_{\substack{x \to \frac{1}{e} \\ x > \frac{1}{e}}} f(x)$
- 3) a) calculer $\lim_{x \to +\infty} f(x)$
 - b) étudier la branche infinie de (C_f) au voisinage de $+\infty$
- 4) montrer que $f'(x) = \frac{\ln x}{(1 + \ln x)^2}$ puis dresser le tableau de variation de f
- 5) construire la courbe (C)
- 6) soit n un entier tel que $n \ge 2$.
- a) montrer que l'équation $f(x) = \sqrt{n}$ admet deux solutions u_n et v_n avec $e^{-1} < u_n < 1 < v_n$
- b) (b1) montrer que $(\forall n \ge 2)$ $v_n \ge \sqrt{n}$ et calculer $\lim_{n \to +\infty} v_n$
 - (b2) montrer que $(\forall x \ge 16)$ $\sqrt{x} > 1 + \ln x$ et déduire que $(\forall n \ge 16)$ $v_n \le n$
 - (b3) montrer que $(\forall n \ge 2)$ $\ln v_n = \frac{1}{2} \ln n + \ln (1 + \ln v_n)$ puis déduire que $\lim_{n \to +\infty} \frac{\ln v_n}{\ln n} = \frac{1}{2}$
- c) (c1) montrer que $(u_n)_n$ est décroissante puis qu'elle est convergente
 - (c2) montrer que $(\forall n \ge 2)$ $u_n = e^{\frac{u_n}{\sqrt{n}} 1}$; déduire que $\lim_{n \to +\infty} u_n = e^{-1}$
 - (c3) démontrer que $\lim_{n\to+\infty} \sqrt{n} \left(u_n e^{-1} \right) = e^{-2}$

Exercice (7)

Soit n un entier de \mathbb{N}^* . On considère la fonction f_n définie par : $f_n(x) = x - n + \frac{n}{2} \ln x$

- 1) calculer les limites $\lim_{x \to +\infty} f_n\left(x\right)$; $\lim_{\substack{x \to 0 \\ x > 0}} f_n\left(x\right)$
- 2) calculer $f'_n(x)$ et dresser le tableau de variation de f_n
- 3) a) montrer que $f_n(x) = 0$ admet une unique solution u_n et $(\forall n \in \mathbb{N}^*)$ $1 \le u_n < e^2$
 - b) montrer que $\left(\forall n \in \mathbb{N}^*\right)$ $f_n\left(u_{n+1}\right) = 1 \frac{1}{2}\ln u_{n+1}$ et déduire la monotonie de $\left(u_n\right)_n$
 - c) montrer que $(\forall n \in \mathbb{N}^*)$ $\ln u_n = 2 \frac{2}{n} u_n$
 - d) calculer $\lim_{n\to +\infty} \frac{2}{n} u_n$ puis déduire que $\lim_{n\to +\infty} u_n = e^2$
- 4) a) montrer que : $\left(\forall n \in \mathbb{N}^*\right) \left(\exists d > 0\right) e^{\frac{2}{n}u_n} 1 = \frac{2e^d}{n}u_n$
 - b) déduire que $\left(\forall n \in \mathbb{N}^*\right)$ $1 \le \frac{e^{\frac{2u_n}{n}} 1}{\frac{2}{n}u_n} \le e^{\frac{2e^2}{n}}$ puis déterminer $\lim_{n \to +\infty} n\left(e^2 u_n\right)$