Exercice 1:1°/ Exprimer, à l'aide des réels ln (a) et ln (b) chacun des réels ci-dessous

a)
$$\ln\left(\frac{a^2}{b}\right) + 2\ln(ab^3) + \ln\left(\sqrt{ab}\right)$$
, b) $\ln\left(a\sqrt{b}\right) - \ln\left(\sqrt{\frac{a}{b}}\right)$

2°/ Déterminer le plus petit entier n tel que $(\frac{1}{2})^n \le 10^{-4}$

3°/ Résoudre dans $\mathbb R$, les équations et les inéquation ci-dessous

a)
$$\ln(x) + \ln(x - 1) = 2$$
 b) $\ln(\ln(x)) = 0$ **c)** $(\ln(x))^2 - 3\ln(x) + 2 = 0$

d)
$$\ln(x+2) - \ln(x-2) \le 0$$
 e) $\ln(\frac{3x}{2}) \ge 1$

Exercice 2 ¿Déterminer les limites ci-dessous

4°/
$$\lim_{x\to 0^+} \frac{1}{x^2} + \ln(x)$$
 5°/ $\lim_{x\to +\infty} x \ln(1+\frac{1}{x})$ **6°**/ $\lim_{x\to +\infty} \frac{x^2}{\ln(x)}$ **7°**/ $\lim_{x\to +\infty} \ln(\frac{1+x}{2+x})$

Exercice3:

1°/ Calculer les intégrales ci-dessous

$$\int_{1}^{e} \frac{\ln{(x)}}{x} dx \ , \quad \int_{0}^{1} \frac{x}{1+x^{2}} dx \ , \quad \int_{0}^{1} \frac{x}{1+x} dx \ , \int_{e}^{e^{2}} \frac{1}{x \ln{(x)}} dx \ , \int_{1}^{2} \frac{x+1}{x} \ dx$$

2°/ A l'aide d'une intégration par partie calculer les intégrales suivantes :

$$I = \int_{1}^{e} \ln(x+1) \ dx \qquad ; \qquad J = \int_{0}^{1} (x+1) \ln(x+1) \ dx .$$

$$K = \int_{1}^{e} \frac{\ln(x)}{\sqrt{x}} \ dx \qquad ; \qquad L = \int_{1}^{e} (\ln(x))^{2} \ dx .$$

Exercice 4: Soit f la fonction définie sur \mathbb{R} par $f(x) = \ln(\sqrt{x^2 + 1} + x)$

a. Montrer que pour tout
$$x \in \mathbb{R}$$
 on a : $f'(x) = \frac{1}{\sqrt{x^2 + 1}}$ et $f''(x) = \frac{-x}{\sqrt{x^2 + 1}}$

b. Montrer que f est impaire et que $\lim_{t \to \infty} \frac{f(x)}{x} = 0$

c. Dresser le tableau de variation de f et tracer (C) en préciser sa tangente en C

d. Calculer l'air de la partie limité par (C) et la droite y=0, x=0 et x=1

2) Montrer que pour tout x > 0 on a: $1 - \frac{x^2}{2} \le f'(x) \le 1$ puis que $x - \frac{1}{6}x^3 \le f(x) \le x$ 3) Soit F la fonction définie sur $[0, +\infty[$ par $F(x) = \int_x^{2x} \frac{f(t)}{t^2} dt \ si \ x > 0$ $= \ln(2)$

a. En utilisant 2) Montrer que $\forall x > 0$ on a : $\ln(2) - \frac{1}{4}x^2 \le F(x) \le \ln(2)$

b. Puis déduire que F est dérivable à droite en 0 **c.** Montrer que $\forall x > 0$ $\frac{f(x)}{4x} \le F(x) \le \frac{f(2x)}{x}$ puis déduire $\lim_{x \to +\infty} F(x)$

d. Montrer que *F* est dérivable sur]0, + ∞ [et que $F'(x) = \frac{f(2x) - 2f(x)}{f(2x)}$

e. Soit φ la fonction définie $]0, +\infty[$ par (x) = f(2x) - 2f(x). Montrer que $\varphi(x) < 0$

Dresser le tableau de variation de F et tracer sa courbe

Exercice Soient f et g les fonctions définies sur]0, $+\infty[$ par $: f(x) = \frac{\ln x}{1+x^2}$ et $g(x) = 1 + x^2 - 2x^2 \ln x$

1/ Etudier les variations de g .En déduire que l'équation g(x) = 0 admet une solution unique α et que 1,8 < α < 2. Préciser le signe de g(x)

2/ Vérifier que $(\alpha) = \frac{1}{2\alpha^2}$, puis dresser le tableau de variation da f et tracer sa courbe C

3/ Soit *F* la fonction définie sur]0, $+\infty$ [par : $F(x) = \int_1^x f(t)dt$

a) Etudier le signe de F ainsi que son sens de variation

b) Montrer que pour tout x > 0, $F\left(\frac{1}{x}\right) = F(x)$

c) Montrer que pour tout $x \ge 1$, $lnx \le \sqrt{x}$ puis que $(x) \le \frac{1}{x\sqrt{x}}$. En déduire que pour $x \ge 1$, on a : $F(x) \le 2$

d) Montrer que F admet une limiten finie β en $+\infty$ et en déduire que $\lim_{\alpha \to \infty} F = \beta$

4/ Pour $n \in \mathbb{N}$ et x > 1 on pose $I_n(x) = \int_1^x t^n lnt dt$ et soit $u_n = \sum_{k=0}^n \frac{(-1)^k}{(2k+1)^2}$

<u>موقع مراجعة باكالوريا</u>

- a) Montrer que $I_n(x)=\frac{x^{n+1}lnx}{n+1}-\frac{x^{n+1}}{(n+1)^2}+\frac{1}{(n+1)^2}$. En déduire $\lim_{x\to 0^+}I_n(x)$
- **b)** Montrer que pour tout $n \in \mathbb{N}$ et pour > 1, $\frac{1}{1+x^2} = \sum_{k=0}^n (-1)^k x^{2k} + (-1)^{n+1} \frac{x^{2n+2}}{1+x^2}$ **c)** Montrer que pour tout $\in \mathbb{N}$, $|u_n \beta| \le \frac{1}{(2n+3)^2}$. En déduire la limite de u.

Exercice 6:1/ Etudier les variations sur]0 , $+\infty$ [de la fonction g définie par $g(x) = ln\left(1+\frac{1}{x}\right) - \frac{1}{1+x}$. En déduire le signe de g(x)

- 2/ Soit f la fonction définie sur $[0, +\infty[$ par : $\begin{cases} f(x) = x ln\left(1 + \frac{1}{x}\right) & \text{si } x > 0 \\ f(0) = 0 & \text{otherwise} \end{cases}$
- a) Etudier la continuité et la dérivabilité de f en 0.
- **b)** Dresser le tableau de variation de f. En déduire que $\forall x \ge 1$, $f(x) \ge ln2$
- c) Tracer C_f dans un repère orthonormé $(0, \vec{i}, \vec{j})$. Unité :2 cm
- **d)** Calculer en cm^2 l'aire du domaine limité par C_f et les droites d'équations x=1, x=2 et y=1
- **4/** On pose : $\forall n \in \mathbb{N}^*$, $U_n = \frac{n^n}{n!}$
 - a) Montrer que $\frac{U_{n+1}}{U_n} = \left(1 + \frac{1}{n}\right)^n$
 - **b)** Montrer que $\forall n \in \mathbb{N}^*$, $\left(1+\frac{1}{n}\right)^n \geq 2$. En déduire que $\forall n \in \mathbb{N}^*$, $U_n \geq 2^{n-1}$
- c) Calculer $\lim_{n\to\infty}U_n$ puis déterminer la limite de la suite V définie par $V_n=ln(U_{n+1})-ln(U_n)$

Exercice 7: Soit f la fonction définie par $f(x) = \frac{1}{x \ln x}$

- 1/ Dresser le tableau de variation de f
- **2/** Montrer que pour tout $k \in \mathbb{N}^* \setminus \{1\}$ on a : $\frac{1}{klnk} \ge \int_k^{k+1} f(x) dx$
- 3/ On considère les suites définies par $I_n = \int_2^{n+1} f(x) dx$ et $U_n = \sum_{k=2}^n \frac{1}{k t n k}$
 - a) Calculer I_n en fonction de n
- **b)** Montrer que pour tout entier $n \geq 2$ on a : $U_n \geq I_n$. Déduire que la suite (U_n) n'est pas convergente

Exercice 8: Soit f la fonction définie sur $\frac{1}{e}$, $+\infty$ par $f(x) = \frac{x^2}{1+lnx}$ 1/ Dresser le tableau de variation de .

2/ En déduire que pour tout réel x de $\frac{1}{e}$, $+\infty$ $f(x) \ge \frac{2}{e}$

- II- Soit *F* la fonction définie sur $[1,+\infty[$ par : $F(x) = \int_1^x f(t)dt$
- 1/ Justifier que F est dérivable sur $[1, +\infty[$ et donner F'(x) pour tout réel x de $[1, +\infty[$ 2/ Montrer que pour tout réel x de $[1, +\infty[$, $F(x) \ge \frac{2}{e}(x-1)$ En déduire $\lim_{x\to +\infty} F(x)$
- 3/a) Montrer que pour tout réel x de]3, $+\infty$ [, $F(x) \ge \int_{\frac{x}{a}}^{x} f(t) dt$
 - **b)** Montrer que pour tout réel x de]3, $+\infty$ [, il existe un réel c de l'intervalle $\left[\frac{x}{3}, x\right]$ tel que : $F(x) \ge \frac{2c^2}{3(1+lnc)}x$
- c) En déduire que pour tout réel x de]3 , $+\infty$ [, $\frac{F(x)}{x} \ge \frac{2x^2}{27(1+\ln x)}$
- **d)** Déterminer alors $\lim_{x \to +\infty} \frac{F(x)}{x}$
- **4/** Donner l'allure de la courbe représentative de la fonction F dans un repère orthonormé $(0,\vec{\imath},\vec{\jmath})$

Exercice 9: On considère la suite (I_n) définie sur \mathbb{N}^* par $I_n = \frac{1}{n} \int_1^2 \frac{(\ln x)^n}{x^2} dx$

- 1/En intégrant par parties, calculer I_1
- 2/a) Montrer que la suite (I_n) est décroissante
- **b)** En déduire que la suite (I_n) est convergente
- c) Montrer que pour tout n de \mathbb{N}^* , $I_n \leq \frac{(\ln 2)^n}{n}$
- **d)** Déterminer la limite de la suite (I_n)
- 3/a) Montrer que pour tout n de \mathbb{N}^* , $I_{n+1} = nI_n \frac{1}{2} \frac{(\ln 2)^{n+1}}{n+1}$
- **b)** En déduire $\int_{1}^{2} \left(\frac{1+lnx}{x}\right)^{2} dx$

Exercice 10 Soit f la fonction définie sur $[-1, +\infty[$ par $\{f(x) = (1+x)\ln(1+x) - x \quad si \ x > -1 \}$

1/ Etudier f et tracer sa courbe C dans un repère orthonormé $(0, \vec{i}, \vec{j}) . ||\vec{i}|| = 2 cm$

<u>موقع مراجعة باكالوريا</u>

2/ Soit $\in]-1$, 0[, on note $\mathcal{A}(\alpha)$ l'aire en cm^2 de la région du plan limitée par C et les droites d'équations x=0, x=0 α et y=-x .Calculer $\mathcal{A}(\alpha)$ en fonction de α puis déterminer $\lim_{\alpha \to (-1)^+} \mathcal{A}(\alpha)$

- II- Soit g la fonction définie sur [-1,0] par : $\begin{cases} g(x) = \frac{x}{\ln{(1+x)}} & \text{si } -1 < x < 0 \\ g(-1) = 0 & \text{et } g(0) = 1 \end{cases}$
- 1/a) Montrer que g est continue sur [-1,0]Etudier la dérivabilité de g à droite en (-1)
 - **2/a)** Montrer que pour tout réel x de]-1 , 0] , $0 \le \int_x^0 \frac{t^2}{1+t} dt \le \frac{-x^3}{3(1+x)}$
- **b)** En déduire que pour tout réel x de]-1, 0], $\frac{x^2}{2} \le x \ln(1+x) \le \frac{x^2}{2} \frac{x^3}{3(1+x)}$
 - c) Montrer alors que g est dérivable à gauche en 0 et que $g'_{a}(0) = \frac{1}{2}$
 - **3/a)** Montrer que g'(x) a le même signe que f(x) sur]-1, 0[
- b) Dresser le tableau de variation de g puis tracer sa courbe dans un autre repère orthonormé

Exercice 11 Soit f la fonction définie sur]0, $+\infty$ [par $f(x) = \frac{4 \ln (x)}{x^2}$

- **1.a** Vérifier que pour tout x > 0 : $f'(x) = 4\left(\frac{1-2\ln(x)}{x^3}\right)$
- b. Dresser le tableau de variation de f puis tracer C
- **c.** Calculer l'aire du domaine limité par C_f et les droites d'équations x=1, $x=\sqrt{e}$

d. Pour tout entier naturel $n \ge 4$ Montrer que l'équation $f(x) = \frac{2}{n}$ admet exactement deux solutions u_n et v_n

tels que $1 \le u_n \le \sqrt{e} \le v_n$

- **2.a** Montrer que pour tout réel $t \in [0, +\infty[$ on a $1-t \le \frac{1}{1+t} \le 1$
 - **b.** En déduire que pour tout réel $a \in]0$, $+\infty[$ $a \frac{a^2}{2} \le \ln(1+a) \le a$
- 4.a En utilisant le résultat de la question
- **2.b** montrer que pour tout entier naturel $n \ge 4$

On a
$$\frac{(u_n-1)(3-u_n)}{2} \le \ln(u_n) \le u_n - 1$$

b. En déduire que pour entier naturel $n \ge 4$ on a $\frac{1}{2n} \le u_n$ $-1 \ge \frac{e}{n}$ puis déterminé La limite de (u_n)

Exercice 12 Soit F la fonction définie sur \mathbb{R} par : $F(x) = \int_{\mathbb{R}} f(x) dx$

- **1.a.** Montrer que F est dérivable sur \mathbb{R} et calculer F'(x)
 - **b.** En déduire que F est strictement croissante sur $\mathbb R$
 - **c.** Montrer que *F* est impaire
- **2.a.** Ecrire une équation de la tangente T a $\mathbb C$ au point d'abscisse 0
- **b.** Vérifier que pour tout $t \in [0, +\infty[$ on a $\frac{1}{\ln{(2+t^2)}} \le \frac{1}{\ln{(2)}}$
- **c.** Etudier alors la position de C et T sur]0, $+\infty[$
- **3. a.** Montrer que pour tout $x \in]0$, $+\infty[$ on a $\frac{x}{\ln{(2+4x^2)}} \le F(x) \le \frac{x}{\ln{(2+x^2)}}$
 - **b**. Dresser le tableau de variation de *F* puis tracer C et *T*

Exercice13

On considère la fonction f définie sur $[0, +\infty[$ par f(0) = 0 et $f(x) = x(1 + \ln^2(x))$ si x > 0

- Et C sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$
- 1) a. Montrer que f est continue à droite en 0
 - b. Etudier la dérivabilité de f à droite en 0 et interpréter le résultat
 - 2) a. Dresser les tableaux de variations de f
 - d. Tracer C
 - 3) Soit $\alpha > 0$ et $I(\alpha) = \int_{\alpha}^{\frac{1}{e}} f(x) dx$
 - a. Calculer $I(\alpha)$
 - b. Calculer l'aire de la partie du plan limité par C et les droites d'équations respectives

$$x = 0$$
, $x = \frac{1}{e}$. et $y = 0$

4) Soit n un entier naturel tel que $n \ge 2$

On considère la fonction g_n définie sur $[n,+\infty[$ par $g_n(x)=\int_n^x \frac{1}{\ln(t)}\mathrm{d}t$

- a) On admet que pour tout $t \ge 0$ on a $\ln(1+t) \le t$. Montrer que pour tout $x \ge n$ on a $g_n(x) \ge \ln\left(\frac{x-1}{n-1}\right)$
- b) Dresser le tableau de variation de g_n
- c) Montrer que pour tout $n \geq 2$ il existe un unique $\alpha_n \in [n, +\infty[$ tel que $g_n(\alpha_n) = 1$
- d) Montrer que pour tout $n \ge 2$; $\int_{\alpha_n}^{\alpha_{n+1}} \frac{1}{\ln(t)} dt = \int_{n}^{n+1} \frac{1}{\ln(t)} dt$
- e) En déduire que (α_n) est strictement croissante et déterminer sa limite

Exercice 14

Soit n un entier naturel non nul

On considère la fonction f_n définie sur $[0, +\infty[$ par $f_n(0) = 0$ et $f_n(x) = x(1 - \ln(x))^n$ si x > 0

Et \mathcal{C}_n sa courbe représentative dans un repère orthonormé $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$

- 1) a. Montrer que f_n est continue à droite en 0
 - b. Etudier la dérivabilité de f_n à droite en 0 et interpréter le résultat
 - 2) a. Dresser les tableaux de variations de f_1 et f_2
 - b. Étudier la position relative des courbes \mathcal{C}_1 et \mathcal{C}_2
 - c. Montrer que toutes les courbes \mathcal{C}_n passent par trois points fixe
 - d. Tracer \mathcal{C}_1 et \mathcal{C}_2
 - 3) Calculer l'aire de la partie du plan limité par \mathcal{C}_1 et les droites d'équations respectives

$$x = 1$$
, $x = e$ et $y = 0$

- 4) Soit (u_n) la suite définie sur N*par $u_n = \int_1^e f_n(x) dx$
 - a. Montrer que (u_n) est décroissante et minoré
 - b. Montrer que pour tout $n \in \mathbb{N}^*$ on a $u_{n+1} = -\frac{1}{2} + \frac{n+1}{2} u_n$
 - c. En déduire l'aire de la partie du plan limité par

 C_1 , C_2 et les doutes équations respectives = 1, x = e

- d. Montrer que pour tout $n \ge 2$ on a $\frac{1}{n+1} \le u_n \le \frac{1}{n-1}$ puis déduire $\lim(u_n)$ et $\lim(nu_n)$
- 5) Soit a un réel différent de u_1 , (v_n) la suite définie sur N^* par $v_1=a$ et $v_{n+1}=-\frac{1}{2}+\frac{n+1}{2}v_n$

$$\mathsf{Et}\ d_n = |v_n - u_n|$$

- a. Montrer que pour tout $n\in \mathsf{N}^*d_n=rac{n!}{2^{n-1}}d_1$ puis montrer que $\lim(d_n)=+\infty$
- b. En déduire que (v_n) est divergente

