## Exercice 1:3 points: Questions indépendantes

- 1) Calculer  $\int_{-\pi}^{\frac{\pi}{8}} \ln\left(\frac{1+\tan x(x)}{1-\tan(x)}\right) dx$ .
- 2) Calculer chacune des limites suivantes :

a) 
$$\lim_{x\to 1} \frac{\ln (1+\ln(x))}{x-1}$$

b) 
$$\lim_{x\to+\infty} \frac{\ln(x-\sqrt[3]{x})}{\ln(x^2-x)}$$

a) 
$$\lim_{x\to 1} \frac{\ln (1+\ln(x))}{x-1}$$
 b)  $\lim_{x\to +\infty} \frac{\ln (x-\sqrt[3]{x})}{\ln (x^2-x)}$  c)  $\lim_{x\to +\infty} \ln (\frac{1+x}{2-\cos x})$ . d)  $\lim_{x\to 1^-} [\ln (\sqrt[3]{1-x^2}).\ln (x)]$ 

e) 
$$\lim_{x\to 0} (x^2) \ln(\frac{1}{1-\cos x})$$
. f)  $\lim_{x\to 1^-} [\ln(\sqrt[3]{1-x}) . \ln(x)]$ .

Pour tout entier naturel n non nul, on considère l'intégrale  $I_n = \int_1^e (\ln x)^n dx$ 

- 1) Etudier la monotonie de (In)
- 2) a) Evaluer I<sub>1</sub>
  - b) Montrer que  $I_{n+1}=e-(n+1)I_n$
- 3) M que pour tout entier naturel non nul n,  $I_n \le \frac{e}{n+1}$ .
- 4) Montrer que (In) est convergente puis calculer  $\lim_{n\to+\infty} I_n$

### **Exercice 3:**

Calculer les intégrales suivantes :

$$\mathsf{M} = \int_0^1 \frac{x^2}{x+1} dx \; ; \; \mathsf{A} = \int_0^{\pi/2} \frac{\cos 2x}{\cos x + \sin x} dx \; ; \; \mathsf{H} = \int_1^e x \ln x \, dx$$

$$\mathsf{D} = \int_0^{e^2} \frac{1}{x \ln x} \, \mathrm{d}x \; ; \; \mathsf{I} = \int_0^{e^2} \frac{1}{x} \ln x \, \mathrm{d}x \; ;$$

## Exercice 4:7 points:

f est la fonction définie sur IR\* par  $f(x) = \ln|x| - \frac{\ln|x|}{x}$ . On désigne par  $\mathcal E$  la courbe représentative de f dans le plan muni d'un repère orthonormé ( $O, \vec{i}, \vec{j}$ ).

- 1) a) Montrer que f est dérivable sur IR\* et que pour tout x de IR\*;  $f'(x) = \frac{x-1+\ln|x|}{x^2}$ . b) Soit h la fonction définie sur IR\* par :

$$h(x) = \ln|x| + x - 1.$$

Etudier les variations de h.

Calculer h(1) puis déduire le signe de h(x) sur  $IR^*$ .

- a) Etudier les variations de f.
- b) Tracer  $\mathcal{C}$  , la courbe représentative de f dans un plan muni d'un repère orthonormé direct  $(O, \vec{\iota}, \vec{j})$ .
- a) Démontrer que pour tout n de IN\*, l'équation
- $f(x) = \frac{1}{n}$  admet une solution unique  $x_n$  dans  $[1, +\infty)$ .
- b) Démontrer que la suite (x<sub>n</sub>) est monotone puis déduire qu'elle est convergente.
  - c) On note  $\ell$  la limite de la suite ( $x_n$ );

Justifier que  $f(\ell) = 0$  puis déduire  $\ell$ .

- 4) Soit g la restriction de f sur  $]-\infty$ , 0[.
  - a) Montrer que g réalise une bijection de
- $]-\infty$ , 0[ sur un intervalle J que l'on précisera.

b) Construire la courbe  $\ell'$  de la fonction réciproque g<sup>-1</sup> dans le même repère.

Placer le point A de  $\mathcal C$  d'abscisse – 2.

5) Calculer l'aire du domaine du plan délimité par C'et les droites d'équations:

$$y = 0, x = 0 \text{ et } x = \ln(2\sqrt{2}).$$

#### **Exercice 5:**

Soit f la fonction définie sur IR+ par

$$\begin{cases}
f(x) = 1 - x + x \ln x ; x > 0
\end{cases}$$

$$f(0) = 1$$

- 1)a) Etudier la continuité et la dérivabilité de f en 0+
  - b) Etudier f puis construire sa courbe C.

2)a) Mque 
$$\forall x \ge 0$$
;  $\frac{x}{x+1} \le \ln(x+1) \le x$ 

- b)En déduire que  $\forall k \le n$ ,  $\frac{k^2}{n^2 + n^3} \le \ln(1 + \frac{k^2}{n^3}) \le \frac{k^2}{n^3}$
- c)Déduire la limite de la suite u définie par :

$$u_n = \prod_{k=1}^n \left( \frac{n^3 + k^2}{n^3} \right)$$

On rappelle que  $\sum_{0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ 

# Exercice 6 (9 points)

Soit f la fonction f définie sur  $\left[\frac{1}{2}, e\right]$  par

$$f(x) = (\ln x)^3 - 3 \ln x$$
.

- 1) a) Calculer f (e) et f  $(\frac{1}{6})$
- b) Montrer que f réalise une bijection de  $\left[\frac{1}{2}, e\right]$
- c) Dans l'annexe jointe, on a tracé la courbe (C) de la fonction f et les demi-tangentes aux points

d'abscisses 1 et e. Tracer, dans le même repère, la

courbe (C') de f<sup>-1</sup> et les demi-tangentes à (C') aux points d'abscisses -2 et 2.

2) Soit la suite  $(a_n)$  définie, pour tout  $n \in IN^*$ , par

$$a_n = \int_1^e (\ln x)^n dx$$

- a) Calculer a<sub>1</sub>.
- b) A l'aide d'une intégration par parties, montrer que  $a_{n+1} = e - (n+1)a_n$
- c) En déduire que  $a_3 = 6 2e$ .
- 3° Soit A l'aire de la partie du plan limitée par la courbe (C') et les droites y = 0, x = -2 et x = 0



b) En déduire A.

## Exercice 7:

Soit f la fonction définie sur IR+.

Soit f(x) = 
$$\begin{cases} f(x) = \frac{x \ln x}{-1+x}; & x \neq 0 \text{ et } x \neq 1 \\ f(0) = 0; f(1) = 1 \end{cases}$$

- 1)a)Montrer que f est continue sur IR+
- b)Etudier la dérivabilité de f en 0+

2)Soit 
$$\varphi(t) = \frac{x \ln x - x + 1}{(x-1)^2} (t-1)^2 - t \ln t - 1 + t, x \in IR^* + \{1\}$$

On admet qu'il existe un réel c compris entre 1 et x tel que  $\varphi'(c) = 0$ 

- a) Déterminer  $\lim_{x \to \infty} \frac{x \ln x x + 1}{(x-1)^2}$
- b) Prouver que f est dérivable en 1 puis donner l'équation de la tangente (T) à la courbe (C) au point d'abscisse 1.
- 3)a)Etudier les variations de la fonction g définie par  $g(x)=1-x^2+2x\ln x$  puis déduire le signe de g(x).
- b)Etudier alors la position de la courbe ( C ) par rapport à la tangente (T).
- 4)Dresser le tableau de variation de f et tracer la courbe ( C ) de f.

### Exercice 8 (7 points)

Soit par 
$$f(x) = \int_{1}^{x} \frac{\ln t}{1+t^2} dt, x > 0$$

- 1° a)Etudier le sens de variations de f.
  - b)En déduire le signe de f(x)
- 2° a)Soit x un réel strictement positif,

calculer 
$$\int_{1}^{x} \frac{\ln t}{t^2} dt$$
.

b)En déduire que pour tout  $x \ge 1$ ,

$$\frac{1}{2}(1 {-} \frac{1}{x} {-} \frac{1}{x} lnx) \leq f(x) \leq 1 {-} \frac{1}{x} {-} \frac{1}{x} lnx$$

c)Prouver alors que f admet en  $+\infty$  une limite finie I

et que 
$$\frac{1}{2} \le 1 \le 1$$

- 3° a)Montrer que, pour tout réel x > 0,  $f(\frac{1}{x}) = f(x)$ .
- b)En déduire que f est prolongeable par continuité en 0.

#### Exercice 9: (6 points)

Soit f la fonction définie sur [0, +∞[ par

$$f(x) = x - \ln(1 + x^2) .$$

On désigne par C la courbe représentative de f dans un repère orthonormé (  $0, \vec{1}, \vec{j}$  ).

- I/ 1) a) Calculer  $\lim_{x \to +\infty} f(x)$  et  $\lim_{x \to +\infty} \frac{f(x)}{x}$
- b) Montrer que la droite C admet une branche infinie de direction asymptotique la droite D: y = x.
- 2) Dresser le tableau de variation de f.
- 3) a) Donner une équation de la tangente  $\Delta$  à la courbe C au point O.
- b) Etudier la position relative de la droite  $\Delta$  et la courbe C.
- c) Tracer dans le repère (  $O, \vec{\imath}, \vec{\jmath}$  ) la droite  $\Delta$  et la courbe C.
- II/ 1) Soit h la fonction définie sur IR par :  $h(x) = \frac{1}{1+x^2}$ Montrer que h admet une primitive H définie sur IR vérifiant H(0) = 0.
- 2) Soit G la fonction définie sur  $[0, \frac{\pi}{2}[$  par

$$G(x) = H(tanx) où H(x) = \int_0^x \frac{1}{1+t^2} dt$$

- a) Montrer que G est dérivable sur  $[0, \frac{\pi}{2}[$  et déterminer sa fonction dérivée.
- b) Expliciter G(x) en fonction de x pour tout x appartenant à  $\left[0,\frac{\pi}{2}\right]$ .
  - c) Calculer alors  $\int_0^1 \frac{1}{1+t^2} dt$ .
- 3) a) A l'aide d'une intégration par partie, montrer que :  $\int_0^1 \ln(1+x^2) dx = \ln 2 2 + 2 \int_0^1 \frac{1}{1+x^2} dx$ .
- b) Déduire l'aire A en u.a de la partie du plan limitée par la courbe C, la droite  $\Delta$  et les droites d'équations x = 0 et x = 1.

#### **Exercice 10:**

I/ Soit f la fonction définie sur IR+ par

$$\begin{cases}
f(x) = x (-1 + \ln(x)) \\
f(0) = 0
\end{cases}$$

- 1) Etudier la continuité et la dérivabilité de f en 0.
- 2)Etudier les variations de f et construire sa courbe représentative C dans un repère ortho normal
- 3)Soit  $\phi$  la restriction de f à l'intervalle [0, 1]. Montrer que  $\phi$  réalise une bijection de [0, 1] dans un intervalle J à préciser.
- a- Déterminer le domaine de dérivabilité de φ<sup>-1</sup>.
- b- Construire les courbes C de  $\varphi$  et C' de  $\varphi^{-1}$  dans un repère orthonormé  $(\Omega, U, V)$

La vie n'est bonne qu'à étudier et à enseigner les mathématiques.



Page 2





II/ Soit u la suite définie par :

$$\begin{cases} u_0 = e \\ u_n > 0 \text{ et } u_{n-1}f'(u_n) = f(u_{n-1}), n \ge 1 \end{cases}$$

1)a)Mque u est une suite géométrique de raison ½.

b- Exprimer alors u<sub>n</sub> en fonction de n

Pour tout  $k \in IN$ ,  $M_k$  et  $M_{k+1}$  sont les points de Cd'abscisses respectives uk et u k+1.

Soit  $S_k$  l'aire du triangle  $OM_kM_{k+1}$ .

a- Prouver que 
$$S_k = \frac{1}{2} [u_{k+1} f(u_k) - u_k f(u_{k+1})]$$

b- Calculer S<sub>k</sub> en fonction de k.

c- Soit 
$$S_n = \sum\limits_{k=1}^{n-1} S_k$$
 , Calculer  $\lim_{n \to +\infty} S_n$ 

#### Exercice 11:

/ Soit f la fonction définie par

$$f(x) = \ln [x + \sqrt{x^2 - 1}]$$

1) Déterminer le domaine D de f.

2) Etudier les variations de f et construire sa courbe

représentative C dans un r.o.n(o, i, j)

1) a-Montrer que f réalise une bijection de D dans un intervalle J à préciser.

b- Déterminer le domaine de dérivabilité de f<sup>-1</sup>.

c- Construire la courbe C' de f<sup>-1</sup> dans le même repère

Vérifier que f<sup>-1</sup>(x) =  $\frac{1}{2}$ ( e<sup>x</sup> + e<sup>-x</sup> ) , x ∈ IR+.

II/ Soit u la suite définie par :  $\begin{cases} u_0 = 2 \\ 1 + u_{n+1} = 2u_n^2, \ n \ge 0 \end{cases}$ 

Montrer que pour tout n ,  $u_n > 1$ 

2) On pose pour tout n de IN,  $V_n = f(u_n)$ 

a- Vérifier que la suite (V<sub>n</sub>) est bien définie et déterminer v<sub>0</sub>.

b)Montrer que la suite ( v<sub>n</sub>) est une suite géométrique puis déduire l'expression de v<sub>n</sub> en fonction de n et v<sub>0</sub>.

c)M alors que 
$$u_n = \frac{1}{2} \left[ \left( 2 + \sqrt{3} \right)^{2^n} + \left( 2 - \sqrt{3} \right)^{2^n} \right]$$

#### Exercice 12:( 4 points )

Soit f la fonction définie sur [0,1] par

$$\begin{cases} f(x) = \frac{x-1}{\ln x} \text{ si } x \in ]0,1[\\ f(0) = 0 \text{ et } f(1) = 1 \end{cases}$$

1) Vérifier que f est continue sur [0,1].

2) Soit F la fonction définie sur [0,1] par:

 $F(x) = \int_{1}^{x} f(t)dt$ . Et G la fonction définie sur ]0,1] par:

[Georges Wolinski]  $G(x) = h(x^2)-H(x)$  où H est une primitive de la fonction  $t \mapsto \frac{f(t)}{t} \text{ sur } ]0, 1]$ 

a) Montrer que G est dérivable sur [0,1] et que G'(x) = f(x)

b) En déduire que pour tout x de ]0,1], G(x) = F(x)

c) Prouver alors que  $\lim G(x) = F(0)$ 

3) a) Montrer que pour tout x de ]0,1[,

$$\int_{x}^{x^2} \frac{1}{t \ln t} dt = \ln 2$$

b) En déduire pour tout x de ]0,1[,

$$0 \le G(x) + \ln 2 \le \frac{x^2 - x}{\ln x}$$

c) Calculer alors F(0)

### Exercice 13:

1° Soit f la fonction définie sur [0,+∞[ par

$$\begin{cases} f(x) = x \ln x, & \text{si } x > 0 \\ f(0) = 0 \end{cases}$$

a) Etudier la continuité et la dérivabilité de f en 0.

b) Dresser le tableau de variations de f.

c) Donner une équation de la tangente T à C<sub>f</sub> au point d'abscisse 1.

2° a) En utilisant la relation ln x =  $\int_{1}^{x} \frac{1}{t} dt$ , montrer

que pour tout réel x > 0, ln  $x \ge 1 - \frac{1}{x}$ 

b) En déduire la position relative de C<sub>f</sub> et T.

c) Tracer T et C<sub>f</sub> dans un même repère orthonormé

3° Soit F la fonction définie par  $F(x) = \int_{1}^{x} f(t) dt$ .

a) Justifier l'existence de F(x) pour tout  $x \ge 0$ 

b) Calculer F(x) pour x > 0

c) En déduire que  $F(0) = \frac{1}{4}$ 

4° Calculer l'aire de la région limité par la courbe de f et les droites d'équations : y = x - 1 et x = 0

#### Exercice 14:( 4 points)

Soit f la fonction définie sur [0, +∞[

par : 
$$\begin{cases} f(0) = 1 \\ f(x) = \frac{1}{x} - \frac{\ln(1+2x)}{2x^2}; \ x > 0 \end{cases}$$

 $\begin{aligned} &\text{par : } \left\{ &f(0) = 1 \\ &\text{par : } \left\{ &f(x) = \frac{1}{x} - \frac{\ln(1+2x)}{2x^2}; \ x > 0 \\ &1) \text{ Soit } x \geq 0, \text{ montrer que pour tout } t \in [0, x] \text{ on a } \\ &: \frac{1}{1+2x} \leq \frac{1}{1+2t} \leq 1 \\ &2) \text{ Soit } x > 0 \end{aligned} \right.$ 

2) Soit x > 0

a/ Montrer que f (x) =  $\frac{2}{x^2} \int_0^x \frac{t}{1+2t} dt$ 

b/ Montrer que  $\frac{1}{1+2x} \le f(x) \le 1$  et en déduire que f est continue à droite de 0







## MR: LATRACH Lycée Pilote de L'Ariana

## Fonctions Logarithmes

4ème Maths

Comme je ne suis pas payé en fonction de ce que je fais, je fais en fonction de ce que je suis payé

2021/2022

3) Montrer que pour tout  $x \ge 0$ ;

$$\int_0^x \frac{2t}{1+2t} dt = \frac{x^2}{1+2x} + 2 \int_0^x (\frac{t}{1+2t})^2 dt$$
4) Soit x > 0

a/ Montrer que 
$$f'(x) = \frac{-4}{x^3} \int_0^x (\frac{t}{1+2t})^2 dt$$

a/ Montrer que 
$$f'(x) = \frac{-4}{x^3} \int_0^x (\frac{t}{1+2t})^2 dt$$
  
b/ En utilisant 1) montrer que  $\frac{-4}{3} \le f'(x) \le \frac{-4}{3(1+2x)^2}$ 

c/ Déduire que ; 
$$\frac{-4x}{3} \leq f(x) - 1 \leq -\frac{4x}{3(1+2x)^2}$$

d/ En déduire que f est dérivable à droite de 0 et préciser le nombre dérivé à droite de 0.

5) Construire la courbe C de f dans un repère orthonormé.

## Exercice 15: (6 points)

1) Soit f la fonction numérique définie sur IR par

$$f(x) = \ln(x - 1 + \sqrt{x^2 - 2x + 2})$$

On désigne par (C) la courbe représentative de la

fonction f dans un repère orthonormé (O,  $\vec{i}$ ,  $\vec{j}$ ).

a) Montrer que le point I(1, 0) est un centre de symétrie de la courbe (C).

b) Montrer que f est dérivable sur IR et que

f'(x) = 
$$\frac{1}{\sqrt{x^2-2x+2}}$$
.

2) Soit n un entier naturel non nul et (un) la suite réelle définie sur IN par :

$$u_0 = \int_0^2 \frac{1}{\sqrt{t^2 - 2t + 2}} dt, u_n = \int_0^2 \frac{(t - 1)^{2n}}{\sqrt{t^2 - 2t + 2}} dt, n > 0$$

Soit I = 
$$\int_0^2 \sqrt{t^2 - 2t + 2} dt$$
.

a) Calculer u<sub>0</sub>.

b) Montrer que  $u_0 + u_1 = I$ .

c) Montrer que  $u_1 + I = 2\sqrt{2}$ .

d) En déduire u<sub>1</sub>.

e) Montrer que pour tout entier naturel non nul n,

$$\frac{\sqrt{2}}{2n+1} \leq u_n \leq \frac{2}{2n+1}.$$

f) En déduire  $\lim_{n \alpha \to \infty} u_n$ .

#### Exercice 16:

Soit F la fonction définie sur IR\* par

$$F(x) = \int_{x}^{2x} \frac{1}{\ln(1+t^2)} dt.$$

1) Montrer que F est impaire.

**2)** Pour tout x > 0, on pose  $g(x) = \int_1^x \frac{1}{\ln{(1+t^2)}} dt$ .

a/ Vérifier que F(x) = g(2x) - g(x); pour tout x > 0.

b/ Montrer que g est dérivable sur IR\*+ puis calculer F'(x) pour tout x > 0.

c/ En Déduire le sens de variations de F sur

[Georges Wolinski] 3) On admet que pour tout x > 0, il existe un réel  $c \in ]x, 2x [tel que F(x) = \frac{x}{\ln{(1+c^2)}}$ 

a/ Montrer que, pour tout x > 0 ; 
$$\frac{x}{\ln{(1+4x^2)}} < F(x) < \frac{x}{\ln{(1+x^2)}}$$
. c/ Déterminer alors les limites suivantes :

$$\lim_{x \to +\infty} \frac{F(x)}{x} \; ; \; \lim_{x \to +\infty} F(x) \; ; \qquad \lim_{x \to 0^+} F(x).$$
 4) a/ Dresser le tableau de variations de F.

b/ Tracer l'allure de la courbe C de F dans un

repère orthonormé. (On donne F( $\sqrt{2}$ )  $\cong 0.7$ )

## Exercice 17:(6 points)

n est un entier naturel supérieur ou égal à 2. Soit la fonction  $g_n$  définie sur  $[n, +\infty[$  par ;

$$g_n(x) = \int_n^x \frac{1}{\ln t} dt .$$

1) Etudier le sens de variations de  $g_n$  sur  $[n, +\infty[$ .

2) a) Montrer que pour tout  $t \ge 1$ ;  $\ln(t) \le t - 1$ 

b) En déduire que pour tout  $x \ge n$ ;  $g_n(x) \ge \ln(\frac{x-1}{n-1})$ .

$$g_n(x) \ge \ln(\frac{x-1}{n-1})$$

c) Dresser alors le tableau de variation de  $g_n$ .

3) a) Montrer que  $g_n$  réalise une bijection de  $[n, +\infty[$ sur un intervalle J que l'on précisera.

b) Déduire que pour tout  $n \ge 2$  il existe unique réel  $u_n \ge n$  tel que  $\int_n^{u_n} \frac{1}{lnt} dt = 1$ .

4) On considère la suite ( $u_n$ ) $_{n\geq 2}$  définie dans 3) b). a) Mque pout tout  $n\geq 2$ ;  $\int_{u_n}^{u_{n+1}}\frac{1}{lnt}dt=\int_{n}^{n+1}\frac{1}{lnt}dt$ .

b) Déduire que la suite u est croissante.

c) Déterminer  $\lim_{n\to+\infty} u_n$ .

## Exercice 18 : ( 6 points)

Soit f la fonction définie sur  $]1, + \infty[$  par :

$$f(x) = -\ln(x^2 - 1)$$

1)a) Etudier les variations de f.

b) Tracer la courbe (C) de f dans un repère orthonormé ( $O,\vec{\iota},\vec{\jmath}$ ).

2) a) Montrer que f admet une fonction réciproque g définie sur un intervalle J à préciser.

b) Calculer les limites :

(1)  $\lim_{x\to 0} \frac{g(x)-\sqrt{2}}{x}$  et (2)  $\lim_{x\to +\infty} \frac{\ln(x)}{g(x)}$ 

c) Prouver que l'équation f(x) = x admet une unique solution  $\alpha \in [1, \sqrt{2}]$ .

3)a) Tracer la courbe (C') de g dans le même repère que f.







b)A l'aide d'une intégration par parties, montrer que :  $\int_{\alpha}^{\sqrt{2}} f(t) dt = -\alpha^2 + \alpha + 2 \int_{\alpha}^{\sqrt{2}} \frac{t}{t+1} dt$ .

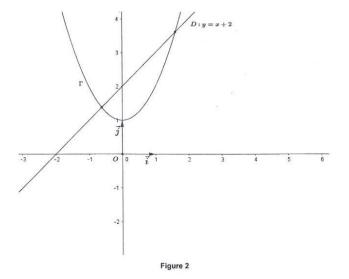
c) Soit A l'aire de la partie du plan limitée par (C') et les droites d'équations  $(x=0), (x=\alpha), et (y=0)$ .

Montrer que A =  $\alpha^2 + \int_{\alpha}^{\sqrt{2}} f(t) dt$  puis déduire A en fonction de  $\alpha$ .

4)Soit  $n \in IN^*$ , on considère la fonction  $F_n$  définie sur ]1,  $+ \infty$ [ par :

$$F_n(x) = \int_0^{f(x)} (g(t))^n dt$$
 et  $u_n = F_n(\alpha)$ 

- a) Interpréter graphiquement u<sub>1</sub> et u<sub>2</sub>.
- b) Montrer que pour tout n de IN\* ;  $u_n \ge \alpha^{n+1}$  . Déduire la limite de la suite u.
- 5) a) Etudier le sens de variations de  $F_n$  sur ]1, +  $\infty$ [.
- b) Montrer que :  $f(x) \le F_n(x)$ ;  $\forall x \in ]1, \sqrt{2}]$  et  $F_n(x) \le f(x)$ ;  $\forall x \in [\sqrt{2}, +\infty[$
- c) Dresser alors le tableau de variation de  $F_n$  . **Exercice 19 :TN 2017**



Soit f la fonction définie sur  $]0, +\infty[$  par  $f(x) = \ln(\frac{x^2}{1+x})$ On désigne par Cf sa courbe représentative dans un repère orthonormé (O, i, j).

A) 1) a) Calculer  $\lim_{x\to 0+} f(x)$  Interpréter graphiquement

La vie n'est bonne qu'à étudier et à enseigner les mathématiques.

- b) Calculer  $\lim_{x\to +\infty} f(x)$  et montrer que  $\lim_{x\to +\infty} \frac{f(x)}{x}$  . Interpréter graphiquement.
- 2) a) Montrer que pour tout  $x \in ]0, +\infty[$ ;  $f'(x) = \frac{x+2}{x(x+1)}$
- b) Dresser le tableau de variation de f.
- c) Montrer que f réalise une bijection de  $]0, +\infty[$  sur un intervalle J que l'on précisera.
- 3) a) Résoudre dans IR l'équation :  $x^2 = x+1$ .
- b) On note a la solution positive . Vérifier que la deuxième solution est égale à  $\frac{-1}{a}$  .
- c) Montrer que la courbe Cf coupe l'axe des abscisses au point A d'abscisses a.
- d) Montrer qu'une équation de la tangente T à Cf au point A est  $:y = \left(\frac{1}{a} + \frac{1}{a^3}\right)(x-a)$
- e) Vérifier que la tangente T passe par  $B(0, -1-\frac{1}{a^2})$
- 4) Dans la figure ci-dessous , on a tracé , la droite
- D: y=x+2 et la courbe de la fonction  $x:\to x^2+1$
- a) Construire les points A et B.
- b) Construire la tangente T et tracer la courbe Cf.
- B) Soit n un entier naturel non nul.

On pose pour tout  $x \ge 1$ ;  $G_n(x) = \int_1^x f(t^n) dt$ 

1) a)Mq  $\forall x \ge 1$ ;

$$(x-1)\ln\left(\frac{1}{2}\right) \le G_n(x) \le (x-1)f(x^n)$$

b) Mq  $\forall x \ge 1$ 

$$G_n(x) = xf(x^n) - \ln\left(\frac{1}{2}\right) - n(x-1) - \int_{1}^{x} \frac{n}{1+t^n} dt$$

- 2) On pose  $J_n = n \int_1^{\sqrt[n]{a}} \frac{1}{1+t^n} dt$
- a) Montrer que  $\lim_{n\to+\infty} \sqrt[n]{a} = 1$
- b) En utilisant B) 1)a),

montrer que  $\lim_{n\to+\infty} G_n(\sqrt[n]{a}) = 0$ 

- c) Montrer que  $\lim_{n\to+\infty}\frac{\sqrt[n]{a-1}}{\frac{1}{n}}=\ln(a)$ .
- d) Déterminer alors  $\lim_{n\to+\infty} J_n$ .

Page 5