Exercice 1

- 1. Soit f la fonction définie sur $\left[0, \frac{\pi}{4}\right]$ par f $(x) = \tan(x)$.
 - a. Montrer que f réalise une bijection de $\left[0, \frac{\pi}{4}\right]$ sur $\left[0, 1\right]$.
 - b. Montrer que f^{-1} est dérivable sur [0, 1] et calculer $(f^{-1})'(x)$.
- 2. Soit $n \in \mathbb{N}^* \setminus \{1\}$ et on pose $I_n = \int_0^1 \frac{t^{n-1}}{1+t^{2n}} dt$.
 - a. On pose pour tout $t \in [0, 1], \phi(t) = f^{-1}(t^n)$. Montrer que ϕ est dérivable sur [0, 1] et calculer $\phi'(t)$.

4 ème Math

Mr Jellali

- b. En déduire I_n en fonction de n.
- 3. Soit $J_n = \int_0^1 \frac{t^{3n-1}}{(1+t^{2n})^2} dt \text{ avec } n \in \mathbb{N}^* \setminus \{1\}$.

Montrer que $J_n = \frac{-1}{4n} + \frac{1}{2}I_n$. En déduire la valeur de $A = \int_0^1 \frac{t + 2t^5}{(1 + t^4)^2} dt$.

Exercice 2

On considère la fonction f définie sur $[1, +\infty[$ par $f(x) = \frac{1}{x^3}$. On pose pour tout entier $n \ge 1, S_n = \sum_{k=1}^n f(k)$.

- 1) Montrer que la suite (S_n) est croissante.
- 2) Calculer $\int_{1}^{n} f(t)dt$, $n \ge 1$ et vérifier que $0 \le \int_{1}^{n} f(t)dt \le \frac{1}{2}$.
- 3)a) Montrer que pour tout entier $k \ge 2$, $\int_{k}^{k+1} f(t)dt \le f(k) \le \int_{k-1}^{k} f(t)dt$.
 - b) En déduire que pour tout entier $n \ge 1$, $\int_{2}^{n+1} f(t) dt \le S_{n} f(1) \le \int_{1}^{n} f(t) dt$.
 - c) Montrer que pour tout entier $n \ge 1$, $1 \le S_n \le \frac{3}{2}$.
 - d) En déduire que la somme $1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{n^3}$ converge et donner un encadrement de sa limite.

Exercice 3

Soit (I_n) la suite définie par $I_0 = \int_0^1 \sqrt{1-x} \ dx$ et pour tout $n \in \mathbb{N}^+$; $I_n = \int_0^1 \sqrt{x^n(1-x)} \ dx$.

- 1) Calculer I_0 .
- 2) Soit f la fonction définie $\sup[0,1]$ par $f(x) = \sqrt{x(1-x)}$. (C) la courbe de f dans un repère orthonormé $(0, \vec{i}, \vec{j})$.
- a) Montrer que (C) est un demi-cercle dont on précisera le centre et le rayon.
- b) En déduire que $I_1 = \frac{\pi}{8}$.
- 3) Montrer que (I_n) est décroissante.
- 4)a) Montrer que pour tout $n \in \mathbb{N}$, $I_{n+2} = \frac{n+2}{n+5}I_n$.
 - b) Montrer que pour tout $n \in \mathbb{N}$, $I_n > 0$.
- 5)a) Montrer que pour tout $n \in \mathbb{N}$, $I_n I_{n+1} \frac{2\pi}{(n+2)(n+3)(n+4)}$
 - b) En déduire la limite de (1

