Exercice 1

On considère la suite (u_n) définie sur \mathbb{N}^* par $u_n = \int_{-1}^0 \frac{(x+1)^n}{\sqrt{x^2+2x+2}} dx$.

- 1) Calculer u₁.
- 2) Montrer que la suite (un) est décroissante. En déduire que la suite (un) est convergente.
- 3) Montrer que pour tout $n \ge 1$, $u_{n+2} = \frac{\sqrt{2}}{n+2} \frac{n+1}{n+2} \times u_n$. En déduire $\lim_{n \to +\infty} u_n$.

Exercice 2

On pose pour tout $n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{4}} \frac{dx}{\cos^{2n+1}(x)} dx$ et $J_n = \int_0^{\frac{\pi}{4}} \frac{\sin^2(x)}{\cos^{2n+1}(x)} dx$

- - b) En déduire la monotonie de la suite (I_n).
- ② a) Montrer que pour tout $n \in \mathbb{N}$, $I_n = \frac{2^n}{\sqrt{2}} (2n-1)J_n$.
 - b) En déduire que pour tout $n \in \mathbb{N}^+$, $2n I_n = (2n-1)I_{n-1} + \frac{2^n}{\sqrt{2}}$
 - c) Montrer que pour tout $n \in \mathbb{N}^*$, $I_n \ge \frac{2^{n-1}}{\sqrt{2n}}$.
 - d) Montrer que pour tout $n \ge 4$, $2^n \ge n^2$.
 - e) En déduire $\lim_{n \to +\infty} I_n$

Exercice 3

Pour tout $n \in \mathbb{N}^+$, on pose $U_n = \int_0^{\frac{\pi}{2}} \sqrt{1 - \frac{\cos^2 t}{u^2}} dt$.

- 1) Calculer U_{\perp} .
- 2)a) Montrer que pour tout $n \in \mathbb{N}^+$, $\frac{\pi}{2} \sqrt{1 \frac{1}{n^2}} \le U_n \le \frac{\pi}{2}$.
 - b) En déduire 1im U,
- 3) Calculer l'intégrale $\int_0^{\frac{\pi}{2}} \cos^2 t \ dt$ et prouver que $\int_0^{\frac{\pi}{2}} \cos^4 t \ dt = \frac{3\pi}{16}$.
- 4) Pour tout $n \in \mathbb{N}^*$, $V_n = n^2 \left(\frac{\pi}{2} U_n \right)$.
- a) Montrer que pour tout $x \in [0,1]$, $\frac{1}{2} \le \frac{1}{1+\sqrt{1-x}} \le \frac{1}{2} + \frac{x}{2}$.
- b) En déduire que pour tout $x \in [0,1]$, $1 \frac{x}{2} \frac{x^2}{2} \le \sqrt{1-x} \le 1 \frac{x}{2}$.
- c) Montrer alors que pour tout $n \in \mathbb{N}^*$, $\left| V_n \frac{\pi}{8} \right| \le \frac{3\pi}{32n^2}$. En déduire $\lim_{n \to +\infty} \nabla_n$.