Lycée Pilote de Sfax A/S 2019-2020

Série N°29 Statistiques

Mr : Mourad EL arbi 4^{ème} Math

Le tableau ci-dessous indique la distance de freinage en fonction de la vitesse pour un véhicule donné:

V (vitesse en km/h)	40	50	60	70	80	90	100	110	130	150
D (distance en mètres)	21	31	43	57	72	89	108	129	175	230

- 1 a) Construire le nuage de points de la série statistique (V,D).
 - b) Calculer le coefficient de corrélation ρ_{VD} . Interpréter le résultat obtenu.
 - c) Déterminer une équation de la droite de régression de D en V.
 - d) En utilisant cet ajustement, donner une estimation de la distance de freinage pour une vitesse de 180 km/h.
- ② On pose $R = \sqrt{D}$.
 - a) Construire le nuage de points de la série statistique (V,R)
 - b) Calculer le coefficient de corrélation ρ_{VR} . Interpréter le résultat obtenu.
 - c) Déterminer une équation de la droite de régression de R en V.
 - d) En déduire l'expression de la distance D en fonction de la vitesse V.
- e) En utilisant cet ajustement, quelle sera la distance de freinage pour une vitesse de 180 km/h. 3 Interpréter.

Le tableau ci-dessous donne, pour les années indiquées, le temps en seconde des records mondiaux de l'épreuve d'athlétisme du 100 mètres masculin.

On désigne par (X, Y) la série statistique double, où X est le rang de l'année et Y est le record.

Année	1900	1912	1921	1930	1964	1983	1991	1999
X	0	12	21	30	64	83	91	99
Y	10.80	10.60	10.40	10.30	10.06	9.93	9.86	9.79

On donnera toutes les valeurs arrondies à 10^{-3} .

- $\ensuremath{\mathbb{O}}$ a) Déterminer le coefficient de corrélation ρ_{XY} . Interpréter le résultat.
 - b) Déterminer une équation de la droite de régression Δ de Y en X.
 - c) Quel record du 100 mètres peut-on prévoir en 2020 ?
- ② Après étude, on choisit de modéliser la situation par un autre ajustement.

On pose alors $X' = e^{-0.00924X}$ et Y' = ln(Y). On obtient :

Année	1900	1912	1921	1930	1964	1983	1991	1999
X'	1.000	0.895	0.824	0.758	0.554	0.464	0.431	0.401
Y'	2.380	2.361	2.342	2.332	2.309	2.296	2.288	2.281

- a) Déterminer le coefficient de corrélation $\rho_{X'Y'}$. Interpréter le résultat.
- b) Déterminer une équation de la droite de régression Δ' de Y' en X' .
- c) En déduire que l'on peut modéliser une expression de $\, Y \,$ en fonction de $\, X \,$ sous la forme suivante :


 $Y = e^{\left(ae^{-0.00924X} + b\right)}$ où a et b sont deux réels à déterminer.

d) A l'aide de cet ajustement, quel record du 100 mètres peut-on prévoir en 2020 ?

e) Calculer $\lim_{X\to +\infty} e^{\left(ae^{-0.00924X}+b\right)}$

f) Que peut-on conclure, en utilisant ce modèle, quant aux records du cent mètres masculin, à très long terme ?

