- a. Montrer que f est continue sur \mathbb{R}_+ .
- b. Montrer que pour tout $x \in]0, +\infty[, f'(x) = \frac{\varphi(x)}{2}]$
- c. En déduire le sens de variation de f.
- 3. Soit g la fonction définie sur $[1, +\infty[$ par $g(x) = \int_{-\infty}^{\ln x} f(t) dt$.

Montrer que g est dérivable sur $]1, +\infty[$ et que $g'(x) = \frac{x^2-1}{x \ln x}$.

- 4. On pose $h(x) = \frac{g(x) g(1)}{x 1}$, x > 1.
 - a. Vérifier que pour tout x > 1, $h(x) = \frac{1}{x-1} \int_0^{\ln x} f(t) dt$.
 - b. Soit x > 1, Montrer qu'il existe $c \in [0, \ln x]$ tel que $h(x) = \frac{\ln x}{x-1} f(c)$.
 - c. En déduire que g est dérivable à droite en 1 et déterminer $g_{d}^{\prime}\left(1\right)$.
- 5. a. Montrer que pour tout $x \ge e$, $g(x) \ge \int_{1}^{\ln x} \frac{2t-1}{4} dt$.
 - b. Dresser le tableau de variation de g. (On ne cherchera pas à calculer g(1)).
- Soit f la fonction définie sur $[1, +\infty]$ par $f(x) = e^{-x\sqrt{\ln x}}$

On désigne par $\mathscr E$ la courbe de \hat{f} dans un repère orthonormé $\left(O,\bar{i},\bar{j}\right)$. (unité 2 cm)

- 1. Etudier la dérivabilité de f à droite en 1 et interpréter le résulatat graphiquement.
- 2. Dresser le tableau de variation de f.
- 3. Montrer que $\mathscr C$ coupe la droite Δ : y=0.5x en un seul point d'abscisse α et que $1.19 < \alpha < 1.2$
- Tracer ℰ et Δ.
- 5. a. Montrer que f réalise une bijection de $[1, +\infty[$ sur un intervalle J à préciser.
 - b. Construire la courbe &' de la fonction réciproque de f.
- 6. On désigne par A l'aire de la partie du plan limitée par \mathscr{C} , \mathscr{C}' , l'axe des abscisses, la droite $x = \frac{\alpha}{2}$ et la droite $x = \alpha$.
 - a. Montrer que $\mathcal{A} = 2 \int_{1}^{\alpha} f(x) dx + 1 \frac{\alpha^{2}}{2}$.
 - b. En déduire que $1 \frac{\alpha^2}{2} \le \mathcal{A} \le 2\alpha 1 \frac{\alpha^2}{2}$.
- 9 1. Soit g la fonction définie sur $[0, +\infty[$ par $g(x) = 1 x e^{-2x}]$
 - a. Dresser le tableau de variation de g.
 - b. Montrer que l'équation g(x) = 0 admet une unique solution α .

Donner une valeur approchée de α à 10^{-1} près.

- c. En déduire le signe de $g(x) sur[0, +\infty[$.
- 2. Soit \hat{f} la fonction définie par $f(x) = x\sqrt{e^{\frac{2}{x}} 1}$

On désigne par \mathscr{C} la courbe de f dans un repère orthonormé direct (O, \vec{u}, \vec{v}) . Etudier f et tracer &.

