- d. En déduire que pour tout $n \ge 1$, $u_n \ge 1 + e^{-n} \left(\frac{n}{2} + \frac{1}{n} \right) \frac{1}{n}$.
- 4. Montrer alors que la suite (u_n) est convergente et déterminer sa limite.
- A) Soit f la fonction définie sur $I =]-\ln 2, +\infty[$ par $f(x) = \frac{1}{\sqrt{2e^x 1}}.$ (C) désigne la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .
-) a) Dresser le tableau de variation de f
 - b) Préciser l'équation de la tangente T à (C) au point d'abscisse 0.
 - c) Tracer T et (C).
- Soit g la fonction définie sur $]0,\pi[$ par $g(x) = -\ln(1+\cos x)$.
- a) Montrer que g réalise une bijection de $]0,\pi[$ sur I.
- b) Soit $h = g^{-1}$. Montrer que h est dérivable sur I et que h'(x) = f(x) pour tout $x \in I$.
- c) Calculer alors l'aire de la partie du plan limitée par (C) et les droites x = 0, y = 0 et $x = \ln 2$.
- 3) Soit $n \in \mathbb{N}^*$ et F_n la fonction définie sur \mathbb{R}_+ par $F_n(x) = \int_0^x [f(t)]^n dt$.
 - 1) a) Exprimer $F_1(x)$ en fonction de h(x). En déduire que $\lim_{x \to +\infty} F_1(x) = \frac{\pi}{2}$.
 - b) Calculer $F_2(x)$ en fonction de x. En déduire que $\lim_{x \to +\infty} F_2(x) = \ln 2$.
-) a) Vérifier que pour tout $t \in \mathbb{R}_+$, $0 \le f(t) \le e^{-\frac{t}{2}}$. En déduire que $0 \le F_n(x) \le \frac{2}{n}$, pour tout $x \in \mathbb{R}_+$.
- b) Montrer que F_n admet une limite finie notée L_n lorsque x tend vers $+\infty$.
- c) Montrer que $F_n(x) + F_{n+2}(x) = \frac{2}{n} \left(1 \left[f(x)\right]^n\right)$.
- d) Montrer alors que pour tout $n \in \mathbb{N}^*$, $L_n + L_{n+2} = \frac{2}{n}$ puis calculer L_3 et L_4 .
- Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = \frac{e^x}{x}$.
 - ① Etudier f et tracer sa courbe C_f dans un repère orthonormé $\left(O,\,\vec{i},\,\vec{j}\right)$.
 - ② Soit $\alpha > 0$. On désigne par $\mathcal{H}(\alpha)$ la partie du plan limitée par C_f , l'axe $\left(0, \overline{i}\right)$ et les droites d'équations $x = \alpha$ et $x = \alpha + 1$.
 - a) Colorier $\mathcal{H}(0.5)$ et $\mathcal{H}(2)$.
 - b) Soit F la fonction définie sur $]0, +\infty[$ par $F(x) = \int_{x}^{x+1} \frac{e^{t}}{t} dt$.

Montrer que F est dérivable sur $]0, +\infty[$ et déterminer F'(x).

- c) En déduire la valeur de α pour laquelle l'aire de la partie $\mathcal{H}(\alpha)$ soit minimale.
- 1. Soit ϕ la fonction définie sur \mathbb{R}_+ par $\phi(x) = (2x-1)e^{2x} + 1$.

Dresser le tableau de variation de φ . En déduire le signe de $\varphi(x)$.

2. Soit f la fonction définie sur \mathbb{R}_+ par $f(x) = \frac{e^{2x} - 1}{x}$ si x > 0

