Série Integrales

Exercice 1:

- 1) Soit f la fonction définie sur $\left| \frac{-\pi}{2}; \frac{\pi}{2} \right|$ par $f(x) = \sin x$.
 - a) Montrer que f admet une fonction réciproque g définie sur [-1;1].
 - b) Montrer que est dérivable sur]-1;1[et que pour tout $x \in$]-1;1[on a : $g'(x) = \frac{1}{\sqrt{1-\frac{x^2}{2}}}$.
- 2) Pour $n \in \mathbb{N}^*$, on pose : $I_n = \int_0^{1-\frac{1}{n}} \frac{dx}{\sqrt{1-x^2}}$ et $S_n = \frac{1}{n} + \frac{1}{\sqrt{n^2-1}} + \frac{1}{\sqrt{n^2-2^2}} + \dots + \frac{1}{\sqrt{n^2-(n-1)^2}}$
 - a) Montrer que pour tout $n \in \mathbb{N}^*$, $S_n = \frac{1}{n} \sum_{k=0}^{n-1} g'\left(\frac{k}{n}\right)$.
 - b) Soit $n \ge 2$ et $0 \le k \le n-2$. Montrer que : $\frac{1}{n} g' \left(\frac{k}{n}\right) \le \int_{\frac{k}{n}}^{\frac{k+1}{n}} g'(x) dx \le \frac{1}{n} g' \left(\frac{k+1}{n}\right)$.
 - c) En déduire que pour $n \ge 2$, $S_n \frac{1}{n}g' \left(1 \frac{1}{n}\right) \le \int_0^{1 \frac{1}{n}} g'(x) dx \le S_n \frac{1}{n}g'(x) dx$
 - d) Calculer la limite de la suite (S_n) .

Exercice 2:

Pour $n \in \mathbb{N}$, on pose : $I_n = \int_0^{\frac{\pi}{4}} \frac{dx}{\cos^{2n+1}(x)}$ et $J_n = \int_0^{\frac{\pi}{4}} \frac{\sin^2(x)}{\cos^{2n+1}(x)} dx$

- 1) Montrer que pour $n \in \mathbb{N}^*$, $I_n I_{n-1} = J_n$. En déduire la monotonie de la suite (I_n) .
- 2) Montrer que pour tout $n \in \mathbb{N}$, $I_n = \frac{2^n}{\sqrt{2}} (2n+1)J_n$.
- 3) Montrer que pour tout $n \in \mathbb{N}^*$, $2nI_n = \frac{2^n}{\sqrt{2}} + (2n-1)I_{n-1}$.
- 4) Montrer que pour tout $n \in \mathbb{N}^n$, $I_n \ge \frac{2^{n-1}}{\sqrt{2n}}$.
- 5) Montrer que pour tout $n \ge 4$, $2^n \ge n^2$. En déduire la limite de la suite (I_n) .

Exercice 3:

On rappelle que: $\cos a \cos b = \frac{1}{2} [\cos(a+b) + \cos(a-b)].$

- 1) Soit g la fonction définie sur $\left[0; \frac{\pi}{2}\right]$ par $g(x) = 2\cos x x\sin x$. Montrer que l'équation g(x) = 0admet une solution unique α et que $\frac{\pi}{6} < \alpha < \frac{\pi}{2}$.
- 2) Soit f la fonction définie sur $\left[0; \frac{\pi}{2}\right]$ par $f(x) = x^2 \cos x$.
 - a) Etudier les variations de f et tracer sa courbe \mathscr{C} .
 - b) Calculer l'aire, en unité d'aires, de la partie du plan limitée par C et l'axe des abscisses.

- Pour $n \in \mathbb{N}^*$, on pose $A_n = \int_0^1 t^n \cos t \, dt$ et $B_n = \int_0^1 t^n \sin t \, dt$. 3)
- a) Montrer que $A_n > 0$ et que (A_n) est décroissante.

LPBT INTEGRALES

- b) Montrer que pour tout $n \in \mathbb{N}^*$, $A_n \leq \frac{1}{n+1}$. En déduire la limite de (A_n)
- c) Montrer que pour tout $n \in \mathbb{N}^*$, $A_{n+1} = -(n+1)B_n + \sin(1)$ et $B_{n+1} = (n+1)A_n \cos(1)$.
- d) Déterminer les limites des suites (B_n) , (nA_n) et (nB_n) .
- 4) Pour $n \in \mathbb{N}^*$ et $p \in \mathbb{N}^*$, on pose $I_{(n,p)} = \int_0^{\pi} (\cos x)^n \cos(px) dx$.
 - a) Calculer $I_{(1:1)}$.
 - b) Montrer par récurrence sur n, que pour tout p > n on a : $I_{(n:p)} = 0$.
 - c) Montrer que pour tout $n \in \mathbb{N}^*$, $I_{(n,n)} = \frac{n}{2^n}$.

Exercice 4:

- 1) Soit f la fonction définie sur]-1; 1[par $f(x) = \int_0^x \frac{2}{1-t^2} dt$.
 - a) Montrer que f est dérivable sur]-1; 1[et préciser sa fonction dérivée.
 - b) Montrer que f est impaire.
 - c) Etudier la position de G par rapport à sa tangente au point d'abscisse 0.
 - d) Soit $\alpha = f(\frac{1}{2})$. Vérifier que $\alpha > 1$.
- 2) Pour $x \in \left[0; \frac{\pi}{2}\right]$, on pose $g(x) = f(\sin x)$.
 - a) Montrer que g est dérivable $\sup \left[0; \frac{\pi}{2}\right]$ et que $g'(x) = \frac{2}{\cos x}$. b) Vérifier que $\int_0^{\frac{\pi}{6}} \frac{1}{\cos t} \, \mathrm{d}t = \frac{\alpha}{2}$.
- 3) Pour $n \in \mathbb{N}^*$ et $x \in]-1$; 1[, on pose $F_n(x) = \int_0^x \frac{2}{(1-t^2)^n} dt$.
 - a) Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in]-1$; 1[, on a : $F_{n+1}(x) = \left(\frac{2n-1}{2n}\right)F_n(x) + \frac{x}{n(1-x^2)^n}.$

$$F_{n+1}(x) = \left(\frac{2n-1}{2n}\right)F_n(x) + \frac{x}{n(1-x^2)^n}.$$

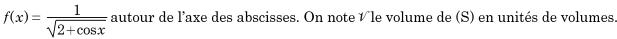
- b) En déduire $F_2\left(\frac{1}{2}\right)$ et $F_3\left(\frac{1}{2}\right)$ en fonction de α .
- 4) On définit la suite (I_n) par : $I_0 = \frac{\alpha}{2}$ et pour $n \in \mathbb{N}^*$, $I_n = \int_0^{\frac{\pi}{6}} \frac{(\sin t)^{2n}}{\cos t} dt$.
 - a) Montrer que pour tout $n \in \mathbb{N}$, $0 \le I_n \le \frac{\alpha}{A^n}$.
 - b) En déduire la limite de (I_n) .

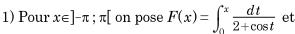
- Pour $n \in \mathbb{N}^*$ et $t \in \left[0; \frac{\pi}{2}\right]$, on pose : $H_n(t) = \sin t + \frac{\sin^3 t}{3} + \dots + \frac{\sin^{2n-1} t}{2n-1}$.
- Montrer que pour $n \in \mathbb{N}^*$ et $t \in [0; \frac{\pi}{2}], H'_n(t) = \frac{1 \sin^{2n} t}{\cos t}$.
- b) Montrer que pour tout $n \in \mathbb{N}^*$, $H_n\left(\frac{\pi}{6}\right) = \frac{\alpha}{2} I_n$.

LPBT INTEGRALES c) On considère la suite (u_n) définie sur \mathbb{N}^* par : $u_n = \frac{1}{2} + \frac{1}{3 \times 2^3} + \dots + \frac{1}{(2n-1) \times 2^{2n-1}}$. Calculer la limite de (u_n) .

Exercice 5:

Dans la figure ci-contre, le solide (S) est obtenu en faisant tourner la courbe de la fonction f définie sur 0; $\frac{\pi}{2}$ par:





$$G(x) = \int_0^{\tan\left(\frac{x}{2}\right)} \frac{2}{3+t^2} dt.$$

a) Vérifier que $\mathcal{V} = \pi F\left(\frac{\pi}{2}\right)$.

b) Montrer que G est dérivable sur $]-\pi$; $\pi[$ et calculer G'(x).

c) En déduire que pour tout $x \in]-\pi$; $\pi[, G(x) = F(x)]$.

2) Soit
$$H(x) = \int_0^x \frac{dt}{1+t^2}$$
; $x \in \mathbb{R}$.

a) Montrer que pour tout $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$, $H(\tan x) = x$.

b) Montrer que pour tout $x \in]-\pi$; $\pi[, G(x) = \frac{2}{\sqrt{3}}H(\frac{1}{\sqrt{3}}\tan(\frac{x}{2}))$

c) Calculer V.

Soit f la fonction définie sur $\left[0; \frac{\pi}{2}\right]$ par $f(x) = \int_{0}^{\sqrt{\tan x}} \frac{t}{1+t^4} dt$.

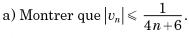
1) Montrer que f est dérivable sur 0; $\frac{\pi}{2}$ et calculer f'(x).

2) Montrer que pour $x \in \left[0, \frac{\pi}{2}\right]$, $\frac{\tan x}{2x(1+\tan^2 x)} \le \frac{f(x)}{x} \le \frac{\tan x}{2x}$. En déduire que f est dérivable à droite en 0.

3) Expliciter f(x). En déduire la valeur de $I = \int_0^1 \frac{t}{1+t^4} dt$.

4) Montrer que pour tout $n \in \mathbb{N}$ et pour tout réel t, $\frac{t}{1+t^4} = \sum_{k=0}^{n} (-1)^k t^{4k+1} + (-1)^{n+1} \frac{t^{4n+5}}{1+t^4}$

5) Pour $n \in \mathbb{N}$, on pose $u_n = \sum_{k=0}^{\infty} \frac{(-1)^k}{4k+2}$ et $v_n = (-1)^{n+1} \int_0^1 \frac{t^{4n+5}}{1+t^4} dt$.



b) En déduire la limite de u.

INTEGRALES LPBT

(S)

