EXERCICE Nº1

Le tableau ci-dessous donne, pour des filles de 1 à 14 ans, la taille moyenne X (en centimètres) et le poi moyen Y (en kilogrammes):

84.5 92.8 99.7 106,4 112,4 118,2 123,9 129,4 134,8 140,1 147.4 154,4 157,9 9,2 | 11,6 | 13,6 | 15,3 17,2 19 22.3 23,8 33 37

1°/a) Calculer la moyenne \overline{X} et l'écart-type σ_X de la variable X.

- b) Calculer la moyenne \overline{Y} et l'écart-type σ_Y de la variable Y.
- c) Calculer le coefficient de corrélation linéaire de la série double (X, Y).
- 2°/ On admet qu'il existe un ajustement de la série (X, Y) par la fonction f définie sur [0, +∞ | par

f(x) = 2,1463 e^{0,0197 x} et on suppose que cet ajustement reste valable pour les filles jusqu'à l'âge de 17ans. Estimer le poids moyen des filles de 17 ans ayant une taille moyenne égale à 165 centimètres

EXERCICE N°2

Monsieur Yahia est un papa heureux. Son fils bénéfice d'une excellente santé. Il a noté son poids (en kg à chacun de ses anniversaires.

Age x _i (en années)	7	8	9	10	11	12
Poids Y _i	22	24	28	34	42	52

Soucieux de l'avenir, Monsieur Yahia souhaiterait avoir une idée de l'évolution du poids de son fils.

1º/a) Représenter cette série par un nuage de points.

b) Calculer le coefficient de corrélation des variables X et Y. Que peut-on conclure ?

 2° / On pose $Z = \sqrt{Y}$.

a) Compléter le tableau suivant :

Age x _i (en années)	7	8	9	10	11	12
Z	4,69	4,9	5,29	5,83	6,48	7,21

- b) Calculer le coefficient de corrélation des variables X et Z. Que peut-on conclure ?
- c) Déterminer la droite de régression de Z en X.
- d) Calculer le poids du fils qui pourrait être à 20 ans, puis à 25 ans.
- e) Selon tes calculs, Yahia a -t -il raison de se faire du souci?

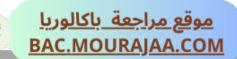
EXERCICE Nº3

L'observation de 50 lapins vendus par un cultivateur suivant les deux caractères :

X: le poids du lapin en kg, Y: le prix du lapin en dinars, est résumée dans le tableau suivant :

Y	1	2	3	4
X 1	22	2	2	0
2`	0	0	4	20

- 1°/ Déterminer les distributions marginales associées à X et à Y.
- 2° / Calculer \overline{X} , \overline{Y} , σ_X et σ_Y .
- 3º/ Calculer la covariance du couple (X, Y) puis le coefficient de corrélation linéaire entre X et Y.
- 4º/ a) Déterminer l'équation de la droite de régression de Y en X.
 - b) Quel est le prix d'un lapin de poids 2750 g?



Denie 56

Exal.

1) al La moyenne
$$\overline{X} = \frac{\Lambda}{N}$$
. $\sum \alpha_i \cdot n_i$

$$= 119,6.$$

$$\sigma(x) = \sqrt{v(x)}$$

= $\sqrt{x^2 - (x)^2}$
= $25,37$ (à 10^{-2} près)

$$\sigma(y) = \sqrt{V(y)}$$

$$= \sqrt{y^2 - y^2}$$

$$= 11,75.(a lo^2 près)$$

c/
$$r = \frac{Cov(x, y)}{\sigma(x) \cdot \sigma(y)}$$

$$= \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sigma(x) \cdot \sigma(y)}$$

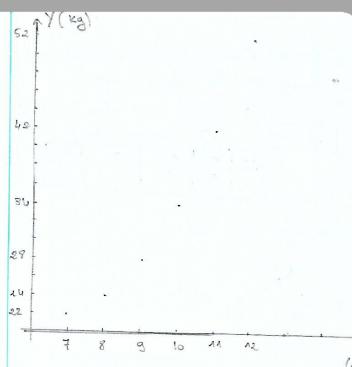
$$= 0,9658 (à lo près)$$

Ex2

1)
$$= \frac{\text{COV}(X,Y)}{\sigma(X).\sigma(Y)} = 0,9716 > \frac{\sqrt{3}}{2}$$

La correlation lineaire est united place de la correlation lineaire est united place de la compansa com

BAC.MOURAIAA.COM



2) b/
$$r = \frac{\text{Cov}(x,Z)}{\sigma(x) \cdot \sigma(Z)}$$

= 0,9829.
On a $r' > r > \frac{\sqrt{3}}{2}$.

Donc la correlation lineaux entre x 2 est plus forte entre x et y. Un ajustement affine entre x et Z plus raisonnable.

c/ On a
$$Z = aX + b$$
.
avec a $\frac{Cov(x,2)}{V(x)} = 0,511$

$$b = \overline{Z} - a\overline{X} = 0,88$$

 $danc \ 2 = 0,511 \ X + 0,88.$

$$\frac{d}{y} = Z = 0,511 \times 20 + 0,88$$

$$y = (0,511 \times 20 + 0,88)^{2}$$

$$= 123,21 \times 3.$$
From $X = 25$,

Ex 3

1) La distribution marginale de la variable X est donnée par le tableau suivat:

Xi	٨	- Q	6e	the as	so we	ea
n;	26	24	, es	denr	iee po	lu
			1. 22	2	6	20

2)
$$\overline{X} = \frac{\Lambda}{N} \cdot \sum_{i=1}^{N} \gamma_{i} \cdot n_{i}$$

$$= \Lambda, 4\delta$$

$$\overline{Y} = \frac{\Lambda}{N} \cdot \sum_{i=1}^{N} \gamma_{i} \cdot n_{i}$$

$$= 2, 48.$$

$$\sigma(x) = \sqrt{V(x)} = \sqrt{x^{2} - x^{2}}$$

$$= 0, 5$$

$$\sigma(y) = \sqrt{V(y)} = \sqrt{x^{2} - x^{2}}$$

3)
$$\leq cov(x, y) = \overline{xy} - \overline{x}. \overline{y}$$

= 0,6436.

$$C = \frac{\text{Cov}(x, y)}{\sigma(x) \cdot \sigma(y)}$$

$$= 0,936$$

= 1,389

4) a/ On pose
$$y = ax + b$$
.
avec $a = \frac{cov(x, y)}{V(x)} = 2,6$
 $b = y - ax = -1,37$