Série N°21 Fonction racine n^{ème}

Mr: Mourad EL arbi

4^{ème} Math

- Soit la fonction f définie sur $[0, +\infty[$ par $f(x) = \sqrt[3]{x} x$ et C_f sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .
- ① Etudier la dérivabilité de f à droite en 0. Interpréter le résultat graphiquement.
- 2 Dresser le tableau de variation de f.
- 3 Etudier la nature de la branche infinie de C_f.
- 4 Déterminer les points d'intersection de C_f avec l'axe des abscisses.
- 5 Tracer la courbe C_f.
- © Soit g la restriction de f à $\left[\frac{\sqrt{3}}{9}, +\infty\right]$.
 - a) Montrer que g réalise une bijection de $\left[\frac{\sqrt{3}}{9}, +\infty\right]$ sur un intervalle J que l'on précisera.
 - b) Tracer la courbe de la fonction réciproque g⁻¹.
- Soit la fonction f définie sur $]0, +\infty[$ par $f(x) = 2\sqrt[4]{x} + \frac{1}{x}$ et C_f sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .
- ① Dresser le tableau de variation de f.
- 2 Etudier la nature de chacune des branches infinies de C_f.
- 3 Tracer la courbe C_f.
- Soit la fonction $f: x \mapsto \sqrt[3]{x^2 + 2x 3}$.

On désigne par C_f la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- ① Déterminer l'ensemble de définition de f.
- ② Montrer que la droite Δ : x = -1 est un axe de symétrie pour C_f .
- ③ a) Etudier la dérivabilité de f à droite en 1. Interpréter le résultat graphiquement.
 - b) Dresser le tableau de variation de f sur $[1, +\infty[$.
- 4 Déterminer la nature de la branche infinie de C_f en $+\infty$.
- \bigcirc Construire C_f .
- Soit la fonction f définie sur [-1,0] par $f(x) = \sqrt[3]{\cos(\frac{\pi x}{2})}$

On désigne par C_f la courbe de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- □ a) Etudier la dérivabilité de f à droite en -1 et interpréter le résultat graphiquement.
 - b) Dresser le tableau de variation de f et tracer C_f.
- ② Montrer que f réalise une bijection de $\begin{bmatrix} -1,0 \end{bmatrix}$ sur un intervalle J à préciser.
- (4) a) f⁻¹ est-elle dérivable à droite en 0 ?
 - b) f⁻¹ est-elle dérivable à gauche en 1?
- ⑤ Montrer que f⁻¹ est dériv —

<u>موقع مراجعة باكالوريا</u> BAC.MOURAJAA.COM



