

g Exercice 1: (4 points)

Une compagnie d'assurance automobile fait un bilan des frais d'intervention, parmi ses dossiers d'accidents de la circulation.

- 85~% des dossiers entraı̂nent des frais de réparation matérielle.
- 20 % des dossiers entraînent des frais de dommages corporels.
- 12~% des dossiers entraı̂nant des frais de réparation matérielle entraı̂nent aussi des frais de dommages corporels.

Soit les évènements suivants :

- R : le dossier traité entraı̂ne des frais de réparation matérielle.
- D : le dossier traité entraı̂ne des frais de dommages corporels.
- 1) En utilisant les notations R et D, exprimer les trois pourcentages de l'énoncé en termes de probabilités; les résultats seront donnés sous forme décimale.
- 2) Calculer la probabilité pour qu'un dossier :
 - a) entraı̂ne des frais de réparation matérielle et des frais de dommages corporels.
 - b) entraîne seulement des frais de réparation matérielle.
 - c) entraîne seulement des frais de dommages corporels.
 - d) n'entraîne ni frais de réparation matérielle ni frais de dommages corporels.
 - e) entraı̂ne des frais de réparation matérielle sachant qu'il entraı̂ne des frais de dommages corporels.
- 3) On constate que 40~% des dossiers traités correspondent à des excès de vitesse et parmi ces derniers 60~% entraı̂nent des frais de dommages corporels.
 - a) On choisit un dossier, quelle est la probabilité pour que ce dossier corresponde à un excès de vitesse et entraı̂ne des frais de dommages corporels?
 - b) On choisit cinq dossiers de façon indépendante. Quelle est la probabilité pour qu'au moins un dossier corresponde à un excès de vitesse et entraı̂ne des frais de dommages corporels.

Exercice 2: (3 points)

- 1) Déterminer, suivant les valeurs de l'entier naturel n, les restes modulo 7 de 2^n et 3^n .
- 2) En déduire le reste modulo 7 de $2019^{2021} 1426^{1426}$
- 3) Soit n un entier naturel, on pose $S_n = \sum_{k=0}^{3n} (2^k 4)$.

Déterminer les entiers naturels n pour lesquels 7 divise S_n .

4) Déterminer les couples d'entiers naturels (x, y) tels que $2^x + 2^y \equiv 2 \pmod{7}$.

Exercice 3: (6 points)

Le plan complexe est rapporté à un repère orthonormé direct $\left(O,\overrightarrow{OI},\overrightarrow{OJ}\right)$.

On donne les points A, B et C d'affixes respectives $z_A = 2$, $z_B = -2i$ et $z_C = 2 + 2i$.

Soit n un entier naturel non nul et φ_n l'application du plan dans lui-même qui à tout point M d'affixe z associe le point M_n d'affixe $z_n = e^{i\frac{\pi}{n}} \overline{z} + 2$.

- 1) Montrer que φ_n est une isométrie.
- 2)a) Déterminer les images des points O, A et B par φ_2 pour n=2.
 - b) Déduire que φ_2 est un antidéplacement.
 - c) Montrer que φ_2 est une symétrie glissante dont on précisera les éléments caractéristiques.
- 3) Dans cette question M un point du cercle trigonométrique de centre O.

On pose $S_n = \sum_{k=1}^n M_k M_{k+1}$.

- a) Montrer que pour tout entier naturel non nul k, $M_k M_{k+1} = 2 \sin \left(\frac{\pi}{2k(k+1)} \right)$.
- b) Montrer que $\forall x \in \left[0, \frac{\pi}{4}\right], \frac{x\sqrt{2}}{2} \leqslant \sin x \leqslant x.$ En déduire que $\forall n \in IN^*, \left(\frac{\pi\sqrt{2}}{4}\right) \left(\frac{1}{k} \frac{1}{k+1}\right) \leqslant \sin\left(\frac{\pi}{2k(k+1)}\right) \leqslant \left(\frac{\pi}{2}\right) \left(\frac{1}{k} \frac{1}{k+1}\right)$
- c) Montrer alors que $\forall n \in IN^*$, $\left(\frac{\pi\sqrt{2}}{2}\right)\left(1-\frac{1}{n+1}\right) \leqslant S_n \leqslant \pi\left(1-\frac{1}{n+1}\right)$
- d) Montrer que la suite (S_n) est convergente et donner un encadrement de sa limite.

Exercice 4: (7 points)

A) Soit f la fonction définie sur $I = [0, +\infty[$ par : f(0) = 0 et $\forall x > 0$, $f(x) = x^3 \ln\left(1 + \frac{1}{x}\right)$.

On désigne par (C_f) la courbe de f dans un repère ortonormé $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$.

- 1)
a) Montrer que f est continue à droite en
 0.
 - b) Montrer que $\forall x > 0, \frac{1}{x+1} \le \ln\left(1 + \frac{1}{x}\right) \le \frac{1}{x}$.
 - c) En déduire que f est dérivable à droite en 0.
- 2)a) Montrer que f est dérivable sur $]0, +\infty[$ et que $\forall x > 0, f'(x) = 3x^2 \left(ln \left(1 + \frac{1}{x} \right) \frac{1}{3(1+x)} \right)$
 - b) En déduire que f est strictement croissante sur I.
 - c) Dresser le tableau de variation de f.
- 3) Soit g la fonction définie par : $g(x) = \frac{f(x)}{x}$, x > 0.
 - a) Vérifier que $\forall x > 0$, $g'(x) = 2x \left(ln \left(1 + \frac{1}{x} \right) \frac{1}{2(1+x)} \right)$, en déduire que g est strictement croissante sur $]0, +\infty[$.
 - b) Montrer que l'équation g(x)=1 admet une unique solution α et que $1<\alpha<2$.
 - c) En déduire que les seules solutions de l'équation f(x)=x sont 0 et α
- 4)a) Tracer la courbe

- b) Montrer que f réalise une bijection I vers I. On note f^{-1} sa fonction réciproque.
- **B)** On considère la suite (u_n) définie sur IN par : $0 < u_0 < \alpha$ et $\forall n \in IN, u_{n+1} = f^{-1}(u_n)$
- 1) Montrer par récurrence que $\forall n \in \mathbb{IN}, 0 < u_n < \alpha$.
- 2)a) Montrer que $g(]0, \alpha[) =]0, 1[.$
 - b) En déduire que la suite (u_n) est strictrment croissante.
 - c) Montrer que la suite (u_n) est convergente est déterminer sa limite.
- C) Soit F la fonction définie sur $I = [0, +\infty[$ par $: F(x) = \int_{x}^{1} f(t)dt.$
- 1)a) Etudier, suivant les valeurs de x, le signe de F(x).
 - b) Montrer que F est dérivable sur I et déterminer sa fonction dérivée F'.
- 2)a) Montrer que $\forall x \ge 1$, $F(x) \le (1-x)\ln 2$.
 - b) En déduire la limite de F en $+\infty$.
- 3)a) A l'aide d'une intégration par parties, montrer que $\forall x>0, \ \mathbf{F}(x)=\frac{ln2}{4}-\frac{x^4}{4}ln\left(1+\frac{1}{x}\right)+\frac{1}{4}\int\limits_x^1\frac{t^3}{1+t}dt.$
 - b) Calculer $\int_{x}^{1} \frac{t^3}{1+t} dt$, pour x > 0.
 - c) En déduite que $\forall x > 0$, $F(x) = \frac{5}{24} \frac{x^3}{12} + \frac{x^2}{8} \frac{x}{4} + \frac{1}{4}ln(1+x) \frac{x^4}{4}ln\left(1 + \frac{1}{x}\right)$
 - d) Calculer $\lim_{x\to 0^+} F(x)$. En déduire la valeur de $\int_0^1 f(t)dt$.
- 4) Pour tout entier naturel non nul n, on pose : $v_n = \sum_{k=0}^{n-1} \left(F\left(\frac{2k+1}{2n}\right) F\left(\frac{k}{n}\right) \right)$.
 - a) Montrer que $\forall n \in IN^*$ et $\forall k \in \{0, 1, ..., n-1\}$, $-\frac{1}{2n} f\left(\frac{2k+1}{2n}\right) \le F\left(\frac{2k+1}{2n}\right) F\left(\frac{k}{n}\right) \le -\frac{1}{2n} f\left(\frac{k}{n}\right).$
 - b) En déduire que \forall n \in IN*, $-\frac{1}{2n}\sum_{k=1}^{n}f\left(\frac{k}{n}\right) \leq v_n \leq -\frac{1}{2n}\sum_{k=0}^{n-1}f\left(\frac{k}{n}\right)$.
 - c) Montrer que la suite (v_n) est convergente et déterminer sa limite.

