Exercice 1

Exercice 2

Exercice 3

* Arithmétique dans 🛚 *

On considère la suite $(oldsymbol{x_n})$ définie par : $\left\{egin{array}{l} oldsymbol{x_0}=27 \ oldsymbol{x_{n+1}}=3oldsymbol{x_n}-4 \end{array}
ight.$

- \bigcirc Calculer x_1 , x_2 , x_3 et x_4 .
 - D Quelle conjecture peut-on émettre concernant les deux derniers chiffres de x_n ?
- 2 Montrer que pour tout entier naturel n on a : $x_{n+2} \equiv x_n[8]$.
 - **b** Déduire que pour tout entier naturel n on a : $x_{2n+1} \equiv 5[8]$ et $x_{2n} \equiv 3[8]$.
- 3 Pour tout entier naturel n on pose $y_n = x_n 2$.
 - \square Montrer que (y_n) est une suite géométrique dont on précisera la raison et le premier terme.
 - b Déduire que pour tout entier naturel n on $a: 2x_n = 50 \times 3^n + 4$.
- 4) 0 Montrer que pour tout entier naturel $m{n}$ on a : $2m{x_n} \equiv 54[100]$.
 - **b** Déterminer suivant n les chiffres des unités et des dizaines de x_n .
- **5** Montrer que pour tout entier naturel n, $(x_n \wedge x_{n+1}) = 1$.

Soit n un entier naturel non nul.

- 1 Soit dans $\mathbb{Z} \times \mathbb{Z}$ l'équation $E: 3x + 7y = 10^{2n}$.
 - Oonner dans $\mathbb{Z} \times \mathbb{Z}$ une solution particulière de 3x + 7y = 1 en déduire une solution particulière de E.
 - **b** Déterminer alors les solutions de l'équation E.
- 2 Soit dans $\mathbb{Z} imes \mathbb{Z}$ l'équation $\mathcal{E}': 3\pmb{x}^2 + 7\pmb{y}^2 = 10^{2\pmb{n}}.$
 - $oldsymbol{a}$ Soit $oldsymbol{x}$ un entier relatif, déterminer les restes modulo 7 de $3oldsymbol{x}^2$.
 - ${\color{red}b}$ Soit ${\color{xy}x}$ un entier, déterminer les restes modulo 7 de $2^n.$

 - d Conclure alors les solutions de E'.
- 1 Déterminer les restes possibles dans la division Euclidienne par 8 du carré d'un entier.
 - **b** Déterminer l'ensemble des entier n tels que $(n+3)^2 \equiv 1[8]$.
- 2 Soit n un entier naturel.
 - $oxed{a}$ Déterminer les restes possibles dans la division Euclidienne par 5 de 2^n .
 - b En déduire le reste dans la division Euclidienne de 2007^{2008} par 5.
 - Soit $\mathscr{A}_n=7^n+7^{2n}+7^{3n}+7^{4n}$. Déterminer l'ensemble des entiers n pour que $5\,|\mathscr{A}_n$.

- 1 On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation $\mathbb{E} : 2x 7y = 3$.
 - o Montrer que si (x,y) est une solution de $\mathbb E$ alors y est impair.
 - b En déduire que toute solution de $\mathbb E$ est de la forme : (7k+5,2k+1), où $k\in\mathbb Z$.
 - Résoudre alors E.
- 2 Dans un site web de vente en ligne, les références des articles sont toutes des nombres à quatre chiffres. Le chiffre des unités est le reste dans la division Euclidienne par 7 du nombre composé des trois autres chiffres.
 - Vérifier que le nombre 8632 peut être la référence d'un article.
 - **b** Soit **p** un chiffre tel que le nombre **p**795 est une référence d'un article.
 - i. Montrer que le nombre p79 est congru à 2p + 2 modulo 7.
 - ii. En déduire qu'il existe un entier relatif y tel que 2p 7y = 3.
 - iii. Déterminer alors p.

Exercice 5

- 1 Déterminer suivant l'entier n le reste dans la division Euclidienne de 3^n par 8.
- 2 En déduire que $3^{2n} 1$ est divisible par 8.
- Trouver le reste dans la division Euclidienne de $3^{120} 3^{121} + 3^{122}$ par 8.

-JJ-

- 1 $oldsymbol{0}$ Trouver un couple dentiers $(oldsymbol{u},oldsymbol{v})$ vérifiant $17oldsymbol{u}+5oldsymbol{v}=1.$
 - Déduire la résolution dans \mathbb{Z}^2 de l'équation $(\mathcal{E}): 17x + 5y = 146$.
- 2 Soit (x, y) solution de (\mathcal{E}) et $d = x \wedge y$.
 - a Déterminer les valeurs possibles de d.
- 3 ne personne achète d' une librairie des cartables à 17 dinars la pièce et des cahiers à 5 dinars la pièce il paye 146 dinars. Déduire de ce qui preécède le nombre de cartables et de cahiers achetés.

Exercice 6

- 1 Soit $\mathcal N$ un entier naturel, montrer que le chiffre des unités de $\mathcal N$ est le reste dans la division Euclidienne de $\mathcal N$ par 10.
- $oxed{2}$ Soit $oldsymbol{n}$ en entier naturel.
 - $oxed{a}$ Déterminer suivant $oldsymbol{n}$, le chiffre des unités de $3^{oldsymbol{n}}$.
 - b En déduire les chiffre des unités de $\mathcal{A}=2003^{2010}+373^{2531}$.
 - Déterminer suivant n, le chiffre des unités de 9^n .
- 3 Montrer par récurrence que pour tout entier naturel non nul n, le chiffre des unités de 6^n est 6.
- 4 Pour tout entier naturel non nul, on considère l'entier $\mathcal{B}=3^n+6^n+9^n$.
 - Déterminer le chiffre des unités de 13.
 - *En déduire le chiffre des unités de* $S = 2003^{2010} + 2006^{2010} + 2009^{2010}$.

Exercic

- $oxed{1}$ $oxed{0}$ Soit $oldsymbol{n}$ un entier naturel. Déterminer le reste dans la dividion Euclidienne de $2^{oldsymbol{n}}$ et de $3^{oldsymbol{n}}$,par 7.
 - b En déduire les valeurs de n pour que $2^n + 3^n$ est divisible par 7.
 - Déterminer le reste dans la division Euclidienne de $30^{2007} + 353^{2007} + 225^{2007}$.

sc. de l'informatique

- Soit (u_n) la suite définie sur $\mathbb N$ par : $\left\{egin{array}{l} u_0=-4 \ \\ u_{n+1}=2u_n-7. \end{array}
 ight.$
 - o Montrer par récurrence que pour tout entier naturel on a : $u_n = 7 11 \times 2^n$.
 - b En déduire suivant n le reste dans la division Euclidienne par 7 de $u_n.$
 - \overline{c} Quel est le reste dans la division Euclidienne par 7 de u_{2009} .

Exercice 8

- Montrer que pour tout entier n, les entiers 14n+3 et 5n+1 sont premiers entre eux.
 - b En déduire deux entiers u et v tels que 31u 11v = 1.
- Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation E: 31x 11y = 3.
- 3 On considère dans $\mathbb Z$ le système $S: \left\{ \begin{array}{l} x \equiv 2[31] \\ x \equiv 5[11]. \end{array} \right.$ Montrer que x est une solution de S si et seulement si $x \equiv 126[341]$.
-) Soit N $=5-3 imes121^{2010}$. déterminer le reste dans la division Euclidienne de N par 341.

Exercice 9

- 1 On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation E: 8x + 5y = 1.
 - 🔼 Donner une solution particulière de E.
 - Résoudre E.
- Soit n un entier relatif tel qu'il existe deux entiers a et b tels que : $\left\{ egin{array}{ll} n = 8a+1 \\ n = 5b+8 \end{array} \right.$
 - \bigcirc Montrer que le couple (a,-b) est solution de E.
 - b En déduire le reste de la division Euclidienne de n par 40.
- $oldsymbol{a}$ Résoudre léquation 8x + 5y = 100 dans $\mathbb{Z} \times \mathbb{Z}$.
 - b Au moyen-Age, un groupe composé d'hommes et de femme a dépensé 100 pièces de monnaie dans une auberge. Les hommes ont dépensé 8 piéces chacun et les femmes 5 pièces chacune. Combien pouait-il y avoir d'hommes et de femmes dans le groupe?

- 1 Soit n un entier naturel, on considère les entiers naturel a=7n+9 et b=12n+15.
 - On note $d = a \wedge b$. Calculer 12a 7b et déduire que d = 1 ou d = 3.
 - **b** Déterminer n pour que d=3.
- $oldsymbol{2}$ On donne dans $\mathbb{Z} imes\mathbb{Z}$ l'équation diophantienne $oldsymbol{\mathcal{E}}:12oldsymbol{x}-7oldsymbol{y}=3.$
 - Montrer que si (x, y) est solution de E alors $y \equiv 0[3]$.
 - b Déterminer une solution particulière de E. Résoudre alors E.
- oxtriangle Un astronome a observé en l'an 2000 un corps cèleste $oldsymbol{A}$ qui apparait périodiquement tout les 24 ans, 6 ans plus tard il observe un corps B dont la période d'apparition est 14 ans. On appelle J l'an de la prochaine apparition simultanée des deux corps aux yeux de l'astronome.
 - \overline{a} Soient x et y le nombre de périodes effectués respectivement par A et B entre l'an 2000 et l'an J. Montrer que (x, y) est une solution de E.
 - b Déterminer **J**.

<u>موقع مراجعة باكالوريا</u>

