Exercice suite implicite avec correction

Exercice

Soit f la fonction définie sur]1, $+\infty$ [par $f(x) = \frac{x}{\sqrt{\ln(x)}}$ et (\mathcal{C}) sa courbe représentative dans un repère orthonormé $(0, \vec{\imath}, \vec{\jmath})$

- 1. Calculer $\lim_{x\to 1} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement les résultats
- 2.a. Montrer que pour tout $x \in]1, +\infty[$ on a $f'(x) = \frac{2\ln(x)-1}{2\sqrt{\ln(x)^3}}$
 - b. Dresser le tableau de variation de f et tracer (C)
- 3. Soit n un entier naturel, $n \ge 3$
- a. Montrer que l'équation f(x) = n admet deux solutions u_n et v_n tels que $1 < u_n < \sqrt{e} < v_n$
- b. Construire u_3 , u_4 , u_5 , v_3 , v_4 et v_5
- c. Montrer que pour tout $n \ge 3$ on a $v_n \ge n$ et déduire la limite de (v_n)
- 4.a. Montrer que (v_n) est croissante
 - b. Montrer que pour tout $n \ge 3$ on a $\frac{1}{n^2} < \ln(u_n) < \frac{e}{n^2}$ et déduire la limite de (u_n)

Correction

1. $\lim_{x\to 1+} f(x) = +\infty$. Donc $\Delta_1: x = 1$ est une asymptote a (C)

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1}{\sqrt{\ln(x)}} = 0$$

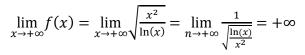
Donc (C) présente une branche parabolique de direction $(0, \vec{j})$ au voisinage de $+\infty$

2.a. f est dérivable sur]1, $+\infty$ [et pour tout $x \in$]1, $+\infty$ [on a $f'(x) = \frac{\sqrt{\ln(x)} - \frac{1}{2x\sqrt{\ln(x)}}x}{\ln(x)} = \frac{2\ln(x) - 1}{2\sqrt{\ln(x)}}$

Qui est de signe de $2\ln(x) - 1 \operatorname{sur} [1, +\infty[$

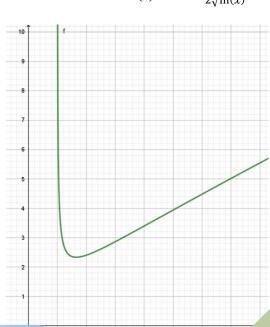
b. $2ln(x) - 1 = 0 \Leftrightarrow ln(x) = \frac{1}{2} \Leftrightarrow x = \sqrt{e}$

x	$-\infty$	<u>1</u> +∞
f'		+
f(x)	+∞ _	7 +∞
		$\frac{1}{(2)^{\frac{1}{2}}}$
	$(2e)^{\frac{1}{2}}$	



$$e^{\frac{1}{2}} = \sqrt{e} \simeq 1,65$$

$$e^{\frac{1}{2}} = \sqrt{e} \simeq 1,65$$
 et $(2e)^{\frac{1}{2}} = \sqrt{2e} \simeq 2,33$



3.a. D'une part:

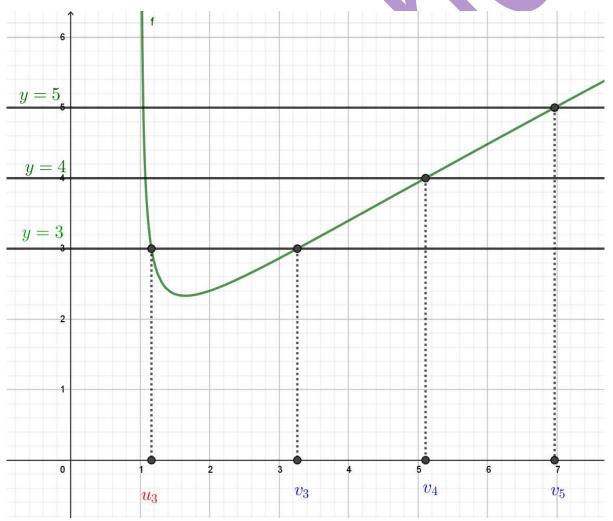
f est continue et strictement décroissante sur $]1, \sqrt{e}]$ donc elle réalise une bijection De $]1, \sqrt{e}]$ sur $f(]1, \sqrt{e}]) = [\sqrt{2e}, +\infty[$ et comme $n \ge 3 > \sqrt{2e}$ alors $n \in [\sqrt{2e}, +\infty[$ Ainsi l'équation f(x) = n admet une unique solution $u_n \in \left]1, \sqrt{e}\right]$

D'autre part :

f est continue et strictement croissante sur $[\sqrt{e}, +\infty]$ donc elle réalise une bijection De $[\sqrt{e}, +\infty[$ sur $f([\sqrt{e}, +\infty[) = [\sqrt{2e}, +\infty[$ et comme $n \ge 3 > \sqrt{2e}$ alors $n \in [\sqrt{2e}, +\infty[$ Ainsi l'équation f(x) = n admet une unique solution $v_n \in [\sqrt{e}, +\infty[$

Conclusion : L'équation f(x) = n admet deux solutions u_n et v_n tels que $1 < u_n < \sqrt{e} < v_n$

b. u_3 et v_3 sont les abscisses des points d'intersection entre (C) et la droite d'équation y=3 u_4 et v_4 sont les abscisses des points d'intersection entre (C) et la droite d'équation y=4 u_5 et v_5 sont les abscisses des points d'intersection entre (C) et la droite d'équation y=5



c. On a
$$n \ge 3 > e \Rightarrow \ln(n) \ge 1 \Rightarrow \frac{1}{\ln(n)} \le 1 \Rightarrow \frac{1}{\sqrt{\ln(n)}} \le 1 \Rightarrow \frac{n}{\sqrt{\ln(n)}} \le n \Rightarrow f(n) \le f(v_n)$$

Et comme f est strictement croissante sur $\left[\sqrt{e}, +\infty\right[$

Alors $v_n \ge n$ or $\lim_{n \to +\infty} n = +\infty$ donc $\lim_{n \to +\infty} v_n = +\infty$ f est strictement croissante sur $\left[\sqrt{e}, +\infty \right[$

4.a.On a $n+1 \ge n$ donc $f(v_{n+1}) \ge f(v_n)$ et comme f est strictement décroissante sur $\left[\sqrt{e}, +\infty\right[$

Alors $u_{n+1} \le u_n$ ainsi (v_n) est croissante

On a
$$f(u_n) = n \Rightarrow \frac{u_n}{\sqrt{\ln(u_n)}} = n \Rightarrow u_n = n\sqrt{\ln(u_n)}$$
 et comme $1 \le u_n \le \sqrt{e}$ alors

$$1 \le u_n \le \sqrt{e} \Rightarrow 1 \le n\sqrt{\ln(u_n)} \le \sqrt{e} \Rightarrow \frac{1}{n} \le \sqrt{\ln(u_n)} \le \frac{\sqrt{e}}{n} \Rightarrow \frac{1}{n^2} \le \ln(u_n) \le \frac{e}{n^2}$$

$$\Rightarrow e^{\frac{1}{n^2}} \leq u_n \leq e^{\frac{e}{n^2}} \quad \operatorname{Or} \begin{cases} \lim\limits_{n \to +\infty} \frac{1}{n^2} = 0 \\ \lim\limits_{n \to +\infty} \frac{e}{n^2} = 0 \end{cases} \operatorname{donc} \begin{cases} \lim\limits_{n \to +\infty} e^{\frac{1}{n^2}} = 1 \\ \lim\limits_{n \to +\infty} e^{\frac{e}{n^2}} = 1 \end{cases} \operatorname{ainsi} \lim_{n \to +\infty} u_n = 1$$

