

Lycée pilote Bourguiba de Tunis

Série 6: Déplacements et Antidéplacements

4ème Math

Mr:Barhoumi

Mathématiques

2020/2021

Exercice 1:

Soit ABC un triangle inscrit dans un cercle (\mathscr{C}) de centre O tel que : $(\overrightarrow{BC}, \overrightarrow{BA}) = \overline{3}[2\pi]$. La médiatrice de [AC] coupe (\mathscr{C}) en I et J(I appartient à l'arc [AC]).

- 1°) a) Montrer qu' il existe une rotation R qui envoie A en C et B en O .
- b) préciser l'angle et le centre de R .
- c) On pose R(C) = C' . Montrer que la droite (CC') est une tangente à (\mathscr{C}) et que les trois points O, A et C' sont alignés .
- 2°) Soit l'application $f = R \circ S_{(AC)} \circ S_{(AB)}$.
- a)Préciser la nature et les éléments caractéristiques de f .
- b) Soit M le point du plan tel que $M \neq I$ et $M \neq J$. On pose $f(M) = M_1$ et $R(M) = M_2$.

Montrer que $(\overrightarrow{MM_1}, \overrightarrow{MM_2}) = (\overrightarrow{MJ}, \overrightarrow{MI}) + \frac{\pi}{2} [2\pi]$.

Que peut-on dire des points M, M_1 et M_2 lorsque $M \in (\mathscr{C}) \setminus \{I, J\}$.

3°) On pose R(J) = J' et soit $g = R \circ f^{-1}$.

Utiliser l'application g pour montrer que C = J * J.

Exercice 2:

Soit ABC un triangle rectangle en A tel que :

 $(\overrightarrow{CA}, \overrightarrow{CB}) \equiv \frac{\pi}{3} [2\pi]$. On note O le milieu de [BC] et R la rotation de centre C et d'angle

- $-\frac{\pi}{3}$.1°) a) Montrer qu'il existe un unique déplacement f du plan tels que f(A) = O et f(C) = B.
- b) En déduire que f est une rotation dont on précisera la mesure principale θ de son angle . Trouver une construction géométrique de son centre I .
- c) Donner une mesure de l'angle orienté $(\overrightarrow{IO}, \overrightarrow{IB})$. En déduire que $l \in [AB]$.
- 2°) On pose $\varphi = S_{(IC)} \circ S_{(BC)} \circ S_{(OI)} \circ S_{(IC)}$.
 - a) Montrer que $\varphi = R \circ f$.
- b) préciser $\varphi(A)$ puis caractériser φ . En déduire que : $R^{-1}\circ S_{(AB)}=f\circ S_{(AC)}$.
- 3°)Soit g l'antidéplacement tel que g(A) = O et g(C) = B.
- a) Montrer que g est une symétrie glissante dont on précisera l'axe et le vecteur.
- b) Soit D le point tel que ABDC est un rectangle .Montrer que g(O) = D.

c)On pose B' = g(B) ,montrer que : $B' = S_D(B)$.

Exercice 3 : Dans un le plan (P) orienté ; on considère un carré ABCD de centre I et tel que : $\left(\overrightarrow{AB}, \overrightarrow{AD}\right) = \frac{\pi}{2} \left[2\pi\right]$. On désigne par J et K les milieux respectifs de $\left[AD\right]$ et $\left[CD\right]$. Soit E le point de (P) tel que le triangle DBE est équilatéral de sens direct .

- 1°) On pose $\psi = t_{\overrightarrow{BC}} \circ S_{(AC)}$.
- a) Déterminer $\psi(A)$ et $\psi(D)$.

- b) En déduire que ψ est une symétrie glissante et déterminer ses éléments caractéristiques .
- 2°) a) Montrer qu'il existe un unique déplacement R du plan qui transforme B en A et A en D . b) Caractériser R.

3°) Soit l'application
$$g = R_{\left(B, \frac{\pi}{6}\right)} \circ R_{\left(E, \frac{\pi}{3}\right)}$$

Déterminer la nature et les éléments caractéristiques de g.

- 4°) Soit f la rotation de centre I et d'angle $\frac{\pi}{2}$ on pose $T = gof^{-1}$, déterminer le point T(A) puis caractériser T.
- 5°) Soit M un point du plan, on pose :

$$M_1 = f(M)$$
 et $M_2 = g(M)$

- a) Quelle est la nature du quadrilatère ABM_2M_1 ?
- b)Montrer qu'il existe un seul antidéplacement φ qui envoie A sur M_1 et D sur M_2 .
- c) Comparer φ et $t_{\overline{AM_1}} \circ S_{(AI)}$. En déduire la nature et les éléments caractéristiques de φ dans chacun des cas suivants :
- * M appartient à la droite (BD).
- ** M appartient à la parallèle à (AC)passant par D.
- 6°) Soit (Δ) une droite variable passant par A et distincte (AC) . On désigne par B' et D' les projetés orthogonaux respectifs de B et D sur (Δ) .
- a) Soit $\left(\Delta^{'}\right)$ la droite perpendiculaire à(Δ) passant par D . Déterminer les images par f des droites $\left(\Delta^{'}\right)$ et $\left(\Delta\right)$; en déduire l'image de D' par f
- b) Montrer que le cercle de diamètre $\left[D^{'}B^{'}\right]$ passe par un point fixe lorsque (Δ) varie .

Exercice 4:

Dans le plan orienté on donne un rectangle ABCD tel que $AB=2\ BC$ et

$$\begin{pmatrix} \mathbf{u}\mathbf{u}\mathbf{r} \wedge \mathbf{u}\mathbf{u}\mathbf{r} \\ AB, AD \end{pmatrix} \equiv \frac{\pi}{2} \big[2\pi \big]. \text{ On désigne par } I \text{ et } J \text{ les}$$
 milieux respectifs de $[AB]$ et $[CD]$.

- 1)a) Montrer qu'il existe un unique déplacement f du plan tel que f(A) = C et f(I) = J
- b)Caractériser f , puis montrer que f(B) = D
- 2)Déterminer la droite δ telle que $f = S_U \circ S_{\delta}$.
- 3) Soit r la rotation de centre I et d'angle $\frac{\pi}{2}$.
- a) Déterminer r(B), r(C), r(J).
- b) Soit M un point de [CJ]. La perpendiculaire à (IM) issue en I coupe la perpendiculaire à (BM) issue en J en M'. Quel est l'ensemble des points M'.
- 4) Soit $g = r \circ f$. a) Montrer que g est une rotation dont on précisera l'angle.
- b) Déterminer g(A).
- c) Déterminer la construction du centre de $\,g\,$.
- 5.)a) Montrer qu'il existe un unique antidéplacement h tel que h(A) = C et h(I) = J.
- b)Montrer que h est une symétrie glissante, puis montrer que h(B) = D.
- c) Déterminer $(h \circ S_{AB})(A)$ et $(h \circ S_{AB})(B)$.
- d) Montrer que $h=f\circ S_{AB}$, puis déduire les éléments caractéristiques de h .

Exercice 5 : Soit (E):

$$\overline{z^3 - \left(8 + i\sqrt{3}\right)z^2 + \left(19 + i4\sqrt{3}\right)z - 12 - 3i\sqrt{3} = 0}$$

- 1) a/ Montrer que l'équation (E) admet deux solutions réelles que l'on précisera.
- b/ Résoudre alors dans

 l'équation (E).
- **2)** Le plan complexe est muni d'un repère orthonormé direct $R(O, \vec{u}, \vec{v})$.

On considère les points A, B et C d'affixes respectives 1, 3 et $(4 + i\sqrt{3})$.

- a/ Placer les points A, B et construire le point C dans le repère R. (Expliquer).
- b/ Vérifier que le triangle ABC est isocèle.
- c)/ Déterminer l'affixe du point D tel que ABCD est un losange. On notera $I=A^*B$, $J=B^*C$ et $L=D^*C$.
- d/ Montrer que le triangle ABD est équilatéral direct.
- **3)** Définir les déplacements qui envoient [AB] en [BC].
- **4)** Soit $g = R_{\left(D, \frac{\pi}{3}\right)} \circ S_{(AC)}$ et K le centre du

losange ABCD.

- a/ Montrer que g est une symétrie glissante.
 b/ Déterminer les images des points A et D par g. Déduire l'axe de g.
- c/ Déterminer g (K) puis déduire la forme réduite de g.

Exercice 6:

ABCD est un losange tel que

$$\left(\overrightarrow{DA},\overrightarrow{DB}\right) \equiv \frac{\pi}{3} \big[2\pi \big]$$
 . On désigne par :

I = A * B, J = D * C, K = A * D, G = B * J, Δ_1

est la médiatrice de [AB] et $\Delta_2 = S_B(\Delta_1)$.

Partie I:

- 1) a) Faire une figure.
- b) Montrer qu'il existe un unique déplacement f tel que f(C) = B et f (B) = A.
- c) Caractériser f.
- 2) Caractériser les isométries suivantes : $g = f \circ S_{\Delta_1}$ et $h = f \circ t_{\overline{RC}}$.
- 3) Soit φ l'isométrie telle que $\varphi = h0g$.

Dép et Antidép 4ème Math 2020/2021

- a) Déterminer φ (A) et φ (K).
- b) Déduire alors la nature et les éléments caractéristiques de φ .

Partie II:

- Soit ψ l'antidéplacement tel que ψ (J) = B et $\psi(\Delta_2) = \Delta_1$.
- 1) Montrer que ψ est une symétrie glissante.
- 2) a) Déterminer l'image de la droite (CD) par
- ψ . b) Déduire ψ (C).
- 3) a) Caractériser l'isométrie $S_G \circ \psi$.
- b) Déduire alors la forme réduite de ψ .

Exercice 7:

Dans le plan orienté, on considère un triangle

ABC tels que AC= 2AB et
$$\left(\overrightarrow{AB}, \overrightarrow{AC}\right) = \frac{\pi}{2} [2\pi]$$
.

 $I = A^*C$.

- 1)a) Montrer qu'il existe un unique déplacement $\,\varphi\,$ qui transforme A en I et B en C.
- b) Montrer que φ est une rotation dont on précisera l'angle. Construire son centre Ω .
- 2) Soient R la rotation de centre A et d'angle

$$\frac{\pi}{2}$$
 et $g = \varphi \circ R^{-1}$

- a)Déterminer g (A) puis caractériser g.
- b) En déduire que : $\varphi = t_{\overline{AI}} \circ R$
- 3) Soit E= R(I) et F le point tel que AEFI est un carré. a) Caractériser l'application $\varphi \circ \varphi$
- b) Déterminer $\varphi \circ \varphi(A)$. En déduire que :

$$\Omega = A * F$$
.

Exercice 8:

Dans le plan orienté, on considère le losange ABCD de centre O et tel que

$$(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{3} [2\pi]$$
. Le cercle de centre B et

de rayon AB recoupe la droite (BD) en I.

- 1)a)Justifier l'existence d'un déplacement unique φ qui envoie A en C et B en D.
- b)Caractériser φ .
- 2)a)Donner la nature de $g = r_{\left(D, \frac{\pi}{3}\right)} \circ t_{\overline{BD}} \circ r_{\left(A, -\frac{\pi}{3}\right)}$.
- b)Déterminer g(D), caractériser alors g

3)Soit
$$f = r_{\left(B, -\frac{2\pi}{3}\right)} \circ r_{\left(A, \frac{\pi}{3}\right)}$$

- a)Donner la nature de f.
- b)Caractériser f.
- 4) Déterminer et caractériser les isométries

suivantes :
$$h = S_{(AI)} \circ S_{(BD)} \circ \varphi$$
 et $k = f \circ t_{\overline{CB}}$

Exercice 9:

Soit AFED un carré tel que $(\overrightarrow{AF}, \overrightarrow{AD}) = \frac{\pi}{2} [2\pi]$

et soit O son centre. On désigne par B et I les symétriques respectifs de A et O par rapport à la droite (EF).

- 1)Caractériser le déplacement r qui envoie F en E et E en D.
- 2) Soient $f = r \circ S_{(OI)}$ et $g = t_{\overline{OI}} \circ r^{-1}$.t
- a)Donner la nature et les éléments caractéristiques de f
- b)Montrer que g est une rotation dont on précisera l'angle.
- c)Déterminer g(O).En déduire le centre de g.
- 3)Soit h l'antidéplacement défini par
- h(D) = F et h(O) = I
- a)Montrer que h est une symétrie glissante.
- b)Donner la forme réduite de h.
- 4)Soit M un point de plan P.
- a) Montrer que $h(M) = g(M) \iff f(M) = M$
- b)En déduire l'ensemble des points M tels que h(M)=g(M).

.

Exercice 10:

ABC un triangle rectangle en A tel que

$$(\overrightarrow{CA}, \overrightarrow{CB}) \equiv \frac{\pi}{3} [2\pi]$$
 et O le milieu de [BC].

- 1) a) Montrer qu'il existe un unique déplacement f qui envoie O en A et B en C.
- b) Montrer que f est une rotation.
- c) On note I le centre de f.

Donner une mesure de chacun des angles $\left(\overrightarrow{IB},\overrightarrow{IO}\right)$ et $\left(\overrightarrow{IO},\overrightarrow{IA}\right)$.

- d) En déduire que l'appartient au segment [AB] et que l'est le barycentre des points pondérés (A,2) et (B,1).
- **2)** a) Soit $r = R_{\left(C, \frac{\pi}{3}\right)}$. Caractériser for.

Dép et Antidép 4ème Math 2020/2021

- b) On note C' l'image de C par f. Montrer que O , I et C' sont alignés .
- 3) Soit g l'antidéplacement qui envoie O en A et B en C.
- a) Déterminer les images des droites (OI) et (OA) par g.

b) Donner la nature et les éléments caractéristiques de g.

Exercice 11:

Dans un plan orienté, on considère un triangle rectangle en B et tel que

$$\left(\overrightarrow{AB},\overrightarrow{AC}\right) \equiv \frac{\pi}{3} [2\pi].$$

On désigne par O le milieu de [AC] et par $J = B^*C$

- 1)Montrer qu'il existe un unique déplacement R tel que R(A) = O et R(B)=C
- 2)a)Montrer que R est une rotation puis construire son centre D.
- b)Donner la nature du quadrilatère ABOD
- 3)On désigne par $R_C = r_{\left(C, \frac{\pi}{3}\right)}$, $R_B = r_{\left(B, \frac{\pi}{3}\right)}$

et $T = t_{\overrightarrow{BC}}$ On pose $f = R_C \circ T \circ R_B$

- a)Déterminer f(B).
- b)En déduire la nature et les éléments caractéristiques de f
- 4)On désigne par I le milieu de [OA] et par K le milieu de [AB], Soit φ l'antidéplacement qui transforme B en A et A en O.
- a)Montrer que φ est une symétrie glissante puis déterminer ses éléments caractéristiques.
- b)Montrer que φ (O)=D
- c)Soit E = φ (D), montrer que E et B sont symétriques par rapport à O.

Exercice 12:

Soit ABC un triangle rectangle en C tel que

$$(\overrightarrow{CA}, \overrightarrow{CB}) = \frac{\pi}{2} [2\pi]$$
 et soit r la rotation de centre

A et d'angle $\frac{\pi}{2}$. Soient D = r(C) et

$$E = r^{-1}(B)$$
, $I = C * D$

- 1)a) Montrer qu'il existe un unique
- déplacement f tel que f(A) = D et f(C) = A
- b)Préciser la nature et les éléments caractéristiques de f.
- 2)Soit $g = f \circ r$
- a)Montrer que g est une translation
- b)Soit F=g(E), montrer que f(B) = F et en déduire la nature du triangle BIF.

- c)Montrer que les points C, A et F sont alignés.
- 3)Soit $G = t_{\overline{AD}}(I)$
- a)Montrer qu'il existe un unique antidéplacement φ tel que

$$\varphi(C) = D$$
 et $\varphi(I) = G$.

b)Montrer que φ est une symétrie glissante dont on précisera le vecteur et l'axe.

Exercice 13:

Soit ABC un triangle équilatéral direct et H le milieu de [BC]. Le cercle ℓ de centre A et de rayon AB coupe la demi-droite [HA) en un point I. On note J le symétrique de I par rapport à (AC).

- 1)Montrer que $(\overrightarrow{BI}, \overrightarrow{CJ}) = \frac{\pi}{3} [2\pi]$
- 2)Montrer qu'il existe un seul déplacement f qui transforme B en C et I en J.
- b)Montrer que f est une rotation que l'on caractérisera.
- 3) Caractériser $f \circ S_{(AI)}$.
- 4)La droite (AC) recoupe le cercle ℓ en D.

On pose
$$g = S_{(AI)} \circ S_{(BD)}$$

- a)Montrer que g est une translation dont on donnera le vecteur.
- b)Caractériser l'isométrie f o g.
- c)Soit K l'antécédent de J par f o g. Montrer que BCIK est un parallélogramme.

Exercice 14:

Dans le plan orienté, on considère un rectangle ABCD de centre O et tel que AB = 2 AD. Soient I, J et F les points définies par : I = A*B ; J = D * C et C = B * F

- 1) a) Montrer qu'il existe un unique déplacement S qui envoie A en C et I en J
- b) Caractériser S
- 2) Soit \mathcal{E} le cercle de diamètre [AB] et \mathcal{E}' le cercle de diamètre [CD].
- (BD) recoupe le cercle ℓ en M et recoupe le cercle \mathcal{C}' en N; on pose $M' = S_{(II)}(M)$.
- a) Montrer que N = S(M)
- b) Déduire que les droites (M'N) et (BC) sont parallèles.

Dép et Antidép 4ème Math 2020/2021

- 3) a) Montrer qu'il existe une seule isométrie f vérifiant f(A) = C, f(I) = J et f(D) = F
- b) Montrer que f est antidéplacement.
- c) Déterminer f(B).
- d) Déduire la nature et les éléments caractéristiques de f.
- 4) Déterminer la nature et les éléments caractéristiques de $g = f \circ S(AD)$.

Exercice 15:

Dans le plan orienté, on considère un carré direct ABCD de centre O et E le symétrique de B par rapport à A. On pose I le milieu du segment [ED].

- I/ 1) a) Montrer qu'il existe un unique déplacement f tel que f(A) = C et f(E) = D.
- b) Caractériser f.
- 2) Soit g l'isométrie définie par ;

$$g = R_{\left(A, \frac{\pi}{2}\right)} \circ S_{\left(BD\right)}.$$

- a) Montrer que g est une symétrie glissante.
- b) Déterminer g(C) et g(D).
- 3) a) Montrer que pour tout M du plan les points g(M) et $f^{-1}(M)$ sont symétriques par rapport à une droite fixe que l'on précisera.
- b) Vérifier que $g \circ t_{\overline{AB}} = S_{(AE)} \circ t_{\overline{CB}}$.
- c) Déduire alors la forme réduite de g.
- d) Caractériser $g \circ S_{(BC)}$.

II/ Le plan P est rapporté au repère orthonormé $(A, \overline{AB}, \overline{AD})$.

Soit φ l'isométrie de P dans P qui à tout point M(x,y) associe le point M'(x',y') avec :

$$\begin{cases} x' = x - 1 \\ y' = -y + 1 \end{cases}$$

- 1) Montrer que φ est une symétrie glissante.
- 2) Démontrer que l'ensemble des points J milieux des segments [MM'] est une droite Δ .
- 3) Déterminer l'expression analytique de la symétrie orthogonale S par rapport à Δ.
- 4) a) Prouver que $\varphi = g$.
- b) Déterminer alors l'expression analytique de l'isométrie t tel que $\varphi = S$ o t.

Exercice 16:

Dans le plan orienté on a représenté un losange AOIB et un triangle ACB rectangle

en A tel que :
$$(\overrightarrow{BA}, \overrightarrow{BC}) = \frac{\pi}{3} [2\pi]$$
 , O le milieu

du segment et Δ la droite perpendiculaire à (BC) en C.

- 1) Soit f le déplacement tel que : (B) = 0 et $((AC)) = \Delta$.
- a) Montrer que f est une rotation.
- b) Déterminer f((AB)).
- c) Déduire que (A) = C.
- **2)** a) Vérifier que le triangle IAC est équilatéral.
- b) Caractériser alors f.
- 3) Soit E le point tel que OICE est un parallélogramme et D = f(C). On désigne

par r la rotation de centre D et d'angle $-\frac{\pi}{3}$ et

on pose t = f o r.

- a) Déterminer t(C) puis caractériser t.
- b) Déterminer r (E) . En déduire que EBD est un triangle équilatéral.
- **4)** Soit F le milieu du segment [AB] et g l'isométrie définie par $g = S_O \circ S_{(AC)}$.
- a) Déterminer la droite Δ' telle que $S_O = S_{(OI)} \circ S_\Delta$.
- b) Caractériser alors g .

Exercice 17:

Soit AIB un triangle équilatéral tel que

$$(\overrightarrow{IA}, \overrightarrow{IB}) = -\frac{\pi}{3}[2\pi]$$
 et C le symétrique de A par rapport à (BI).

- 1) a) Montrer qu'il existe un seul déplacement f tel que f(A)=B et f(B)=C. b) Identifier f.
- 2) Soit (Γ) le cercle de centre B et passant par I. Soit M un point de ce cercle et M' son image par la rotation R de centre I

et d'angle .
$$-\frac{\pi}{3}$$
 .

a) Montrer que si M décrit (Γ) le point M' décrit un cercle (Γ ') qu'on précisera et qu'on construira.

- b) Soit Ω le point d'intersection de (Γ) et
- (Γ') .Montrer que si $M \in \Gamma \setminus \{I\}$ alors Ω, M et M' sont alignés.
- 3) Soit g l'antidéplacement définie par g(A)=B et g(B)=C.
- a) Montrer que g est une symétrie glissante qu'on caractérisera.
- b) Vérifier que $g = S_{(BC)} \circ R$ et déduire l'ensemble des points N du plan tels que g(N)=R(N).