Exercice1:

Soit ABCD un carré direct de centre O.

I, J, K et L sont les milieux respectifs des segment [AB], [BC], [CD] et [DA].

1°) Justifier l'existence et l'unicité d'un déplacement f qui transforme B en K et L en A.

Déterminer la nature et l'angle de f.

2°) a)Déterminer les images par f des droites (AB) et (AD), en déduire f(A) et f(I).

b)En déduire le centre de F.

3)Caractériser chacune des transformations :

$$\begin{split} f = & S_{(AC)} \ o \ S_{(BD),} \qquad f = \ S_{(BC)} \ o \ S_{(OI)} \ , \quad f = \ r_{(C,\frac{\pi}{2})} o \ r_{(A,\frac{\pi}{2})} \\ f = & r_{(A,\frac{\pi}{2})} o \ t_{\stackrel{\rightarrow}{CB}} \qquad \qquad f = \ S_{(AC)} \ o \ r_{(A,\frac{\pi}{2})} \quad f = \ S_{(IK)} \ o \ t_{\stackrel{\rightarrow}{BD}} \end{split}$$

Exercice 2:

Le plan est orienté dans le sens direct. Soit ABC

isocèle en A tel que
$$\left(\overrightarrow{AB}, \overrightarrow{AC}\right) \equiv \frac{-\pi}{3} \left[2\pi\right]$$

Soit O le centre du cercle $\mathscr C$ circonscrit au triangle ABC, I le milieu du segment [BC], J le milieu du segment [AB] et L le milieu du segment [AC]

1°) Montrer que OBAC est un losange.

2°)a) Montrer qu'il existe un unique antidéplacement f tel que f(A) = C et f(B) = A.

- a) Montrer que f est une symétrie glissante dont on précisera l'axe et le vecteur.
- b) Montrer que $f = R_{\left(0, -\frac{\pi}{3}\right)} \circ S_{(AB)}$.
- c) Déterminer alors la nature et les éléments
- d) caractéristiques de $R_{\left(0,\frac{\pi}{3}\right)}$ o $t_{\frac{1}{2}BC}$
- 3°) Soit l'isométrie $\phi = S_{(BC)} o S_{(AC)} o S_{(AB)}$.
 - a) Montrer que $S_{(AC)} \circ S_{(AB)} = S_{(AO)} \circ S_{(AC)}$.

En déduire que $\phi = S_{(IK)} \circ S_{(IJ)} \circ S_{(AC)} \circ ù$ K est le

projeté orthogonal de I sur (AC).

- b) Montrer alors que ϕ est une symétrie glissante dont précisera l'axe et le vecteur.
- 4°) Soit g une isométrie du plan qui laisse globalement invariant le triangle ABC.
 - a) Montrer que g fixe le point O.
 - b) Montrer que g([BC]) = [BC].
 - c) Déterminer toutes les isométries qui

Laissent globalement invariant le triangle ABC.

Exercice 3:

Dans le plan orienté, ABCD est un parallélogramme de sens indirect de centre I et les triangles ABO_1 , BCO_2 , CDO_3 et DAO_4 sont des triangles rectangles isocèles directs de sommets principaux respectifs O_1 , O_2 , O_3 et O_4 . Voir la figure ci-contre.

On désigne par R₁, R₂, R₃ et R₄ les rotations d'angle

 $\frac{\pi}{2}$ et de centres respectifs O₁, O₂, O₃ et O₄

1)a) Déterminer R_2 o $R_1(A)$; R_3 o $R_2(B)$ et R_4 o $R_3(C)$

b) Montrer que les isométries suivantes $R_2 \circ R_1$, $R_3 \circ R_2$ et $R_4 \circ R_3$

sont égales à une même isométrie f que l'on précisera

2)a) Montrer que R_3 o $R_2(O_1) = R_2(O_1)$, déduire alors $f(O_1)$

b) Montrer que f (O_2) = O_4

c) M que le quadrilatère O₁O₂O₃O₄ est un carré.

Exercice 4:

Soit ABC un triangle équilatéral de sens direct. On désigne par I=A*B et J=A*C .

1°) Montrer qu'il existe un unique déplacement f qui envoie A sur C et I sur J.

Donner les éléments caractéristiques de f.

2°)Définir l'antidéplacement g qui envoie C en A et A en B.

3°) Caractériser les applications fog et gof.

Exercice 5: (6 points)

ABCD est un losange tel que $(\overrightarrow{DA}, \overrightarrow{DB}) \equiv \frac{\pi}{3} [2\pi]$. On désigne par : I = A * B, J = D * C , K = A * D, G = B * J,

 Δ_1 est la médiatrice de [AB] et $\Delta_2 = S_B(\Delta_1)$.

Partie I:

- 1) a) Faire une figure.
- b) Montrer qu'il existe un unique déplacement f tel que f(C) = B et f (B) = A.
 - c) Caractériser f.
 - 2) Caractériser les isométries suivantes :

 $g = f \circ S_{\Delta_1}$ et $h = f \circ t_{\overrightarrow{BC}}$.

- 3) Soit φ l'isométrie telle que $\varphi = h \circ g$.
 - a) Déterminer $\varphi(A)$ et $\varphi(K)$.
- b) Déduire alors la nature et les éléments caractéristiques de φ .

Partie II:

Soit ψ l'antidéplacement tel que $\psi(J) = B$ et $\psi(\Delta_2) = \Delta_1$.

- 1) Montrer que ψ est une symétrie glissante.
- 2) a) Déterminer l'image de la droite (CD) par ψ .
 - b) Déduire $\psi(C)$.

La vie n'est bonne qu'à étudier et à enseigner les mathématiques.

Page 1

3) a) Caractériser l'isométrie $S_G \circ \psi$

b) Déduire alors la forme réduite de ψ .

Exercice 6:

Dans le plan orienté, on considère un triangle ABC

tels que AC= 2AB et (AB, AC)
$$\equiv \frac{\pi}{2}$$
 [2 π]. I = A-C.

- 1)a) Montrer qu'il existe un unique déplacement φ qui transforme A en I et B en C.
- b) Montrer que φ est une rotation dont on précisera l'angle. Construire son centre Ω .
- 2) Soient R la rotation de centre A et d'angle $\frac{\pi}{2}$ et $g = \varphi \circ R^{-1}$.
- a)Déterminer g (A) puis caractériser l'application g.
- b) En déduire que : $\varphi = t_{\rightarrow}$ o R.
- 3) Soit E= R(I) et F le point tel que AEFI est un carré.
- a) Caractériser l'application φ o φ
 - b) Déterminer (φ o φ) (A).

En déduire que : $\Omega = A_*F$.

Exercice 7:

Dans le plan orienté, on considère le losange ABCD

de centre O et tel que
$$(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{3} [2\pi]$$
.

Le cercle de centre B et de rayon AB recoupe la droite (BD) en I.

- 1)a)Justifier l'existence d'un déplacement unique φ qui envoie A en C et B en D.
- b)Caractériser f.
- 2)a)Donner la nature de g= $r_{(D,\frac{\pi}{3})}$ o $t_{\stackrel{\rightarrow}{BD}}$ o $r_{(A,\frac{\pi}{3})}$
- b)Déterminer g(D), caractériser alors g
- 3)Soit f = $r_{(B,-\frac{2\pi}{3})}$ o $r_{(A,\frac{\pi}{3})}$
- a)Donner la nature de f.
- b)Caractériser f.
- 4)Déterminer et caractériser les isométries suivantes :h= $S_{(AI)}$ o $S_{(BD)}$ o φ et k = f o t_{CB}

Exercice 8:

Soit AFED un carré tel que $(\overrightarrow{AF}, \overrightarrow{AD}) = \frac{\pi}{2} [2\pi]$ et soit

O son centre. On désigne par B et I les symétriques respectifs de A et O par rapport à la droite (EF). 1)Caractériser le déplacement r qui envoie F en E et

2)Soient f = r o $S_{(OI)}$ et g= $t_{\overrightarrow{OI}}$ o r^{-1}

a)Donner la nature et les éléments caractéristiques de f

- b)Mque g est une rotation dont on précisera l'angle.
- c)Déterminer g(O).En déduire le centre de g.
- 3)Soit h l'antidéplacement défini par
- h(D) = F et h(O) = I
- a)Mque h est une symétrie glissante.
- b)Donner la forme réduite de h.
- 4)Soit M un point de plan P.
- a)Mque $h(M)=g(M) \Leftrightarrow f(M)=M$
- b)En déduire l'ensemble des points M tels que h(M)=g(M)

Exercice 9: (3 points)

On note H l'orthocentre d'un triangle équilatéral direct ABC et B' le milieu de [AC].

On désigne par r_A, r_B et r_C les rotations de centres respectifs A, B et C et de même angle

- $\frac{\pi}{3}$. On pose f = r_A o r_B , g = r_C o r_B o r_A et $h = S_{(AC)} \circ S_{(AB)} \circ S_{(BC)}$
- 1) a) Déterminer f(C), f(B) et g (B)
- b) En déduire la nature et les éléments caractéristiques de f et de g.
- 2) Soit d la droite parallèle à (AC) passant par B
 - a) Montrer que $S_{(AB)}$ o $S_{(BC)}$ = S_d o $S_{(AB)}$
 - b) Déduire que h est une symétrie glissante.

Exercice: 10 (5 points)

ABC un triangle rectangle en A tel que

$$(\widehat{\overrightarrow{CA}}, \widehat{\overrightarrow{CB}}) \equiv \frac{\pi}{3} [2\pi]$$
 et O le milieu de [BC].

- 1) a) Montrer qu'il existe un unique déplacement f qui envoie O en A et B en C.
 - b) Montrer que f est une rotation.
 - c) On note I le centre de f.

Donner une mesure de chacun des angles (IB,IO) et (IO,IA)

- d) En déduire que I appartient au segment [AB] et que I est le barycentre des points pondérés (A,2) et (B,1).
- **2)** a) Soit $r = R_{(C, \frac{\pi}{3})}$

Caractériser l'application f o r.

b) On note C' l'image de C par f.

Montrer que O, I et C' sont alignés.

- 3) Soit g l'antidéplacement qui envoie O en A et B en C.
- a) Déterminer les images des droites (OI) et (OA) par g.
- b) Donner la nature et les éléments caractéristiques de g.

Page 2

Jean Morel

Exercice 11:

Dans un plan orienté, on considère un triangle rectangle en B et tel que $(\stackrel{\rightarrow}{AB},\stackrel{\rightarrow}{AC}) \equiv \frac{\pi}{3} [2\pi]$.

On désigne par O le milieu de [AC] et par J =B*C 1)Mqu'il existe un unique déplacement R tel que R(A) = O et R(B)=C

2)a)Montrer que R est une rotation puis construire son centre D.

b)Donner la nature du quadrilatère ABOD

3)On désigne par R_C=r(C, $\frac{\pi}{3}$), R_B=r(B, $\frac{\pi}{3}$)

et $T=t_{\overrightarrow{BC}}$ On pose $f=R_C$ o T o R_B .

a)Déterminer f(B).

b)En déduire la nature et les éléments caractéristiques de f

4)On désigne par I le milieu de [OA] et par K le milieu de [AB], Soit ϕ l'antidéplacement qui transforme B en A et A en O.

a)Montrer que ϕ est une symétrie glissante puis déterminer ses éléments caractéristiques.

b)Montrer que $\varphi(O)=D$

c)Soit E = φ (D), montrer que E et B sont symétriques par rapport à O.

Exercice 12:

Soit ABC un triangle rectangle en C tel que

 $(\vec{CA},\vec{CB}) \equiv \frac{\pi}{2} [2\pi]$ et soit r la rotation de centre A et

d'angle $\frac{\pi}{2}$. Soient D= r(C) et E = r-1(B), I = C * D

1)a) Montrer qu'il existe un unique déplacement f tel que f(A) = D et f(C) = A

b)Préciser la nature et les éléments caractéristiques de f.

2)Soit $g = f \circ r$

a)Montrer que g est une translation

b)Soit F=g(E), montrer que f(B) = F et en déduire la nature du triangle BIF.

c)Montrer que les points C, A et F sont alignés.

3)Soit G= t_{AD} (1)

a)Mqu'il existe un unique antidéplacement ϕ tel que ϕ (C) = D et ϕ (I) = G

b)Montrer que ϕ est une symétrie glissante dont on précisera le vecteur et l'axe.

Exercice 13:

Soit ABC un triangle équilatéral direct et H le milieu de [BC].

Le cercle $\operatorname{\mathscr{C}}$ de centre A et de rayon AB coupe la

demi-droite [HA) en un point I.

1)Montrer que $(\overrightarrow{BI}, \overrightarrow{CJ}) \equiv \frac{\pi}{3} [2\pi]$

2)Montrer qu'il existe un seul déplacement f qui transforme B en C et I en J.

On note J le symétrique de I par rapport à (AC).

b)M que f est une rotation que l'on caractérisera.

3)Caractériser f o S_{(AI).}

4)La droite (AC) recoupe le cercle ℓ en D.

On pose $g = S_{(AI)} \circ S_{(BD)}$

a)Mque g est une translation dont on donnera le vecteur.

b)Caractériser l'isométrie f o g.

c)Soit K l'antécédent de J par f o g. Montrer que BCIK est un parallélogramme.

Exercice 14:

ABC est un triangle équilatéral direct.

 $\Omega = S_{(AC)}(B)$ et I = A*C

1)Soit r la rotation d'angle $\pi/3$ et telle que r(A)=C

a)Déterminer le centre de r ;

b)Construire B' = r(B); déduire que C= A*B'

2)On pose $\varphi = S_{(AB)}$ or

a)Montrer que φ est une symétrie glissante.

b)Donner la forme réduite de φ

3)Soit J=B*B' et g l'antidéplacement tel que

g(A)=C et g(B)=B'

a)Mque g est une symétrie glissante.

b)Construire l'=g(l)

c)Déduire la forme réduite de g

Exercice 15

Dans le plan orienté, on considère un rectangle ABCD de centre O et tel que AB = 2 AD.

Soient I, J et F les points définies par :

I = A*B; J = D * C et C = B * F

1) a) Montrer qu'il existe un unique déplacement S qui envoie A en C et I en J

b) Caractériser S

2) Soit $\mathcal E$ le cercle de diamètre [AB] et $\mathcal E$ le cercle de diamètre [CD].

(BD) recoupe le cercle \mathcal{C} en M et recoupe le cercle \mathcal{C} en N; on pose M' = $S_{(L)}(M)$

a) Montrer que N = S(M)

b) Déduire que les droites (M'N) et (BC) sont parallèles.

3) a) Montrer qu'il existe une seule isométrie f vérifiant f(A) = C, f(I) = J et f(D) = F

b) Montrer que f est antidéplacement.

c) Déterminer f(B).

d) Déduire la nature et les éléments caractéristiques de f.

La vie n'est bonne qu'à étudier et à enseigner les mathématiques.

Page 3

Jean Morel

4) Déterminer la nature et les éléments caractéristiques de g = f o $S_{(AD)}$

Exercice 16:

Le plan est muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$.

- **1)** a) Placer les points A(1) , B(j) et C(j²) où j = $e^{i\frac{2\pi}{3}}$
- b) Montrer que ABC est un triangle équilatéral de centre O.
- 2) Désignons par I = B*C , K = B*A et L = A*C
- a) Caractériser l'antidéplacement f qui envoie $\, \, {\rm B} \,$ en ${\rm C}$ et $\, {\rm K} \,$ en $\, {\rm I} \,$
 - b) Définir la transformation $\varphi = f^{-1}oS_{AC}$
- 3) On désigne par s_1 , s_2 et s_3 les symétries orthogonales respectivement par rapport aux

droites (OA),(OB) et (OC) et par r la rotation de centre O d'angle $\frac{2\pi}{2}$.

Soit M un point du plan, $M_1 = s_1$ (M), $M_2 = s_2$ (M), $M_3 = s_3$ (M).

- a) Montrer que $M_2 = r^2 (M_1)$ et $M_3 = r(M_1)$ (où r^2 désigne $r \circ r$).
- b) Prouver que le triangle $M_1M_2M_3$ est équilatéral lorsque M est distinct de O.
- **4)** Soit M un point quelconque du plan P, d'affixe z non nul.

Montrer que les points M_1 , M_2 et M_3 ont pour affixes respectives \bar{z} , $j^2\bar{z}$ et $j\bar{z}$.

- **5)** Soit M_4 le symétrique de M par rapport à la droite (BC).
- a)Mque le point I est le milieu du segment [M₁M₄].
 - b) En déduire que l'affixe de M_4 est $Z = -1 \bar{z}$
- **6)** a) Montrer que les points M_2 , M_3 et M_4 sont alignés si et seulement si $\frac{-1+j^2\bar{z}}{j^2\bar{z}-j\bar{z}}$ est réel.
- b) Déduire l'ensemble des points M tels que les points M₂, M₃ et M₄ sont alignés.
- (On rappelle que : $1 + j + j^2 = 0$, $j^2 = \bar{j}$ et $j^3 = 1$)

Exercice 17:

Le plan est orienté dans le sens direct.

Dans la figure donnée ci contre

- C est un cercle de diamètre [BC] et de centre O.
- A le point de
- C tel que

$$\left(\overrightarrow{OC}, \overrightarrow{OA}\right) \equiv \frac{..}{4} \left[2\pi\right].$$

- I le point de [AB] tel que AI = AC.
- K le milieu de [AB].
- Δ La perpendiculaire à (BC) passant par K .

1°)a) Montrer que
$$(\overrightarrow{BC}, \overrightarrow{BA}) = \frac{...}{8} [2\pi]$$
.

- b) En déduire que le triangle IBC est isocèle en I. 2°)a) Montrer qu'il existe une unique rotation R telle que R(C) = I et R(I) = B.
- b) Préciser l'angle de R et construire son centre Ω .
 - c) Montrer que Ω appartient au cercle C.
- d) Montrer que O, I et Ω sont alignés.
- 3°) La médiatrice de [IB] recoupe C en J.
- a)Montrer que A et J sont symétriques par rapport à (OI) et que C, I et J sont alignés.
- b)En déduire que R(A) = J
- 4°) La droite (Ω A) coupe (BC) en D.
- a) Montrer que AJBD est un parallélogramme. b)Soit f l'antidéplacement tel que f(A) = B et f(J) = D. Montrer que f est la symétrie glissante d'axe Δ et de vecteur \overrightarrow{AA} où A' est le projeté orthogonal de A sur (BC).



