MR: LATRACH. Lycée Pílote Aríana

ISOMETRIES

2016/2017 4 Math

Les choses de la vie, comme les ondes de l'océan, se composent Et se décomposent sans cesse. **VICTOR HUGO**

Le plan est rapporté à un repère orthonormé direct (O, i, i).

Exercice 1: (VRAI / FAUX)

1) Soient D et Δ deux droites strictement parallèles, A un point de D et B un point de Δ tel que (AB) n'est pas perpendiculaire à D. Soit E l'ensemble des isométries qui transforment D en Δ et A en B.

a/ E contient une translation.

b/ E contient une rotation.

c/ E contient une symétrie orthogonale.

d/ E contient une symétrie glissante.

<u>2)</u>

1) ABDC étant un parallélogramme de centre O du plan.

 $S_{(AD)}$ o $S_{O} = S_{(BC)}$ si et seulement si ABDC est un losange.

3)

a) Dans le plan orienté, on considère les points :

A(1,1), B(2, 0), C(3, -1), E(1, 5), F(0,6)

Si f est une isométrie telle que f(A) = E et f(B) = F alors f(C) est le barycentre des points

pondérés (E, 1) et (F, -2)

b)I est le milieu d'un segment [AB].

 $S_{(IB)}\,o\,t_{\overrightarrow{AI}} \quad \widehat{\,\,\,}_{(AB)} \quad est:\, S_{I}.$

4)

- a) Si f est une isométrie qui n'admet aucun point fixe alors fof est une translation
- b) Soit ABCD un carré.

L'isométrie $S_{(AD)}oS_{(AB)}oS_{(BC)}$ est la symétrie glissante de vecteur $2.\overline{BA}$ et d'axe (AB)

c) Soient Δ et Δ' deux droites perpendiculaires.

Si f et g sont deux symétries glissantes d'axes respectifs Δ et Δ' alors fog est une symétrie centrale.

5) Soit A et B deux points distincts, f un déplacement qui envoie A en B et g un antidéplacement qui envoie B en A. Alors gof est

une symétrie glissante.

- **6)** La composée d'une translation et d'une symétrie orthogonale est une symétrie glissante.
- 7) Soit IJKL un rectangle.

Alors $S_{(IJ)}oS_{(JK)}oS_{(KL)}oS_{(LI)}$ est une translation.

8) ABC est un triangle équilatéral.

Soit f l'isométrie telle que f(A) = B, f(B) = C

et f (C) = A alors f o f o f est l'identité.

9) ABCD est un carré direct de centre O .Δ est la médiatrice du [AD]

f est l'isométrie distincte de S_{Δ} telle que f(B) = C,

f(D) = A et g = f o S_{Δ} a) O n'est pas invariant par f

b) $g = S_{(AC)}$

10) Soient D_1 , D_2 , et D_3 trois droites

strictement parallèles l'isométrie $\varphi = S_{D_1} o$

 S_{D_2} o S_{D_3} est une symétrie orthogonale.

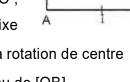
11) f une isométrie autre que l'identité qui fixe deux points distincts A et B. On désigne par Δ la médiatrice de [AB] alors l'isométrie

 f^{-1} o S_{Δ} o f n'a pas des points fixes.

Exercice 2:

Le plan est rapporté à un repère orthonormé direct (O ,

u, v). Soit A le point d'affixe



O

1-i√3 B l'image de O par la rotation de centre A et d'angle $\frac{-\pi}{2}$ et I le milieu de [OB].

Répondre par vrai ou faux en justifiant la réponse choisie.

- 1°) Le point B a pour affixe $1+\sqrt{3}+i(1-\sqrt{3})$
- 2°) l'application f du plan qui à tout point M d'affixe z associe le point M' d'affixe z'= $e^{-i\frac{2\pi}{3}}\bar{z}$ est la symétrie orthogonale d'axe (OA)
- 3°) L'isométrie $S_{(AI)}ot_{\overrightarrow{OI}}oS_{(OB)}$ est une translation

<u>موقع مراجعة ب</u> URAIAA.COM

MR: LATRACH. Lycée Pílote Aríana

ISOMETRIES

2016/2017 4 Math

Les choses de la vie, comme les ondes de l'océan, se composent Et se décomposent sans cesse. **VICTOR HUGO**

4°) Soit l'isométrie $g=R_{(I,\frac{-\pi}{2})}oS_{(AB)}oR_{(A,\frac{-\pi}{2})}$. g

fixe le point J milieu du segment [OA].

5)Soient A, B et C trois points non alignés du plan. La réciproque de l'isométrie $t_{\overrightarrow{AB}}oS_{(AC)}ot_{\overrightarrow{CB}}$ est $t_{\overrightarrow{BA}}oS_{(AC)}ot_{\overrightarrow{BC}}$

Exercice 3:

- Soit ABCD un losange de centre O, de sens direct et tel que : AC=8 et BD=4
- 1)a)Construire Δ la droite qui porte la bissectrice intérieure de $(\overrightarrow{OA}; \overrightarrow{OB})$
- b)Placer les points A', B', C' et D' les images respectives des points A, B, C et D par la symétrie orthogonale S_{Δ} .
- 2)Déterminer l'ensemble F des isométries du plan qui laissent globalement invariant {A, B, C, D}
- 3)Soit G l'ensemble des isométries du plan qui transforment {A, B, C, D} en {A', B', C', D'}.
- on pose g= $S\Delta of$
- a)Montrer que : $g \in G$ ssi $f \in F$
- b)Montrer que $S_{\Delta}oS_{O}$ est une symétrie orthogonale $S_{\Delta'}$ que l'on précisera
- c)Caractériser $S_{\vartriangle}oS_{(AC)}$ et $S_{\vartriangle}oS_{(BD)}$
- d)En déduire l'ensemble G

Exercice 4:

- 1) L'isométrie $S_{(BC)}$ o $S_{(BD)}$ o $t_{\overline{BD}}$ est
 - a) une rotation
 - b) une translation
 - c) une symétrie glissante.
- 2) t_{BD} o $S_{(BC)}$ est égale à
 - a) $t_{\overline{CD}}$ o $S_{(OI)}$
 - b) $t_{\overline{BC}}$ o $S_{(OI)}$
 - c) $S_{(BC)}$.
- 3) Soient A et B deux points distincts du plan.

Déterminer toutes les isométries qui laissent globalement invariant le segment [AB].

<u>4)</u> ABC désigne un triangle équilatéral. Déterminer toutes les isométries qui laissent globalement invariant le triangle ABC.

Exercice 5:

Caractériser les transformations suivantes :

f:M(x,y)---->M'(x',y');
$$\begin{cases} x' = -x\frac{\sqrt{3}}{2} + \frac{y}{2} + \frac{2+\sqrt{3}}{6} \\ y' = \frac{x}{2} + y\frac{\sqrt{3}}{2} - \frac{1}{6} \end{cases}$$

g:M(x,y) ----->M'(x',y');
$$\begin{cases} x' = y \\ y' = x + 4 \end{cases}$$
h: $z' = \frac{1}{z} + \frac{1}{2}i$

Exercice 6:

ABCD est un losange tel que $(\overrightarrow{AB}; \overrightarrow{AD}) = \frac{\pi}{3}$. On désigne par I, J, K, L, et O les milieux respectifs des segments [AB], [BC], (CD], [DA] et [BD]. On note Δ la médiatrice de AB] et par Δ ' la médiatrice de [CD]

- 1)Soit f l'isométrie définie par
- f(A)=B, f(B)=D et f(D)=C
- a)Montrer que f n'a pas des points fixes
- b)Déduire la nature de f
- 2)Soir R la rotation de centre B et d'angle $\frac{-\pi}{3}$
- a)Démontrer que f = RoS_{Δ}
- b)A-t-on $f = S_{\Lambda} \circ R$
- 3)a)Définir S telle que R=S(BC)oS
- b)En déduire que f peut s'écrire sous la forme f= S_(BC)oT où T est une translation à préciser
- 4)Soit T'= $\frac{1}{2} \overrightarrow{AD}$ et on pose g=(T')⁻¹ o f
- a)Déterminer g(D), g(I) et g(O)
- b)En déduire la nature et les éléments
- caractéristiques de g.
- c)Démontrer que f = T'o g A-t-on goT'=f

Exercice 7:

Soit f : z' = - i \overline{z} +1.

Montrer que f est une symétrie glissante.

La vie n'est bonne qu'à étudier et à enseigner les mathématiques.

موقع مراجعة باكالوريا BAC.MOURAJAA.COM

MR: LATRACH. Lycée Pílote Aríana

ISOMETRIES

2016/2017 4 Math

Les choses de la vie, comme les ondes de l'océan, se composent Et se décomposent sans cesse. **VICTOR HUGO**

Puis caractériser f o f.

Exercice 8:

ABC un triangle rectangle et isocèle et direct en A. I le milieu du segment [BC] et J celui du segment [AB]. Considérons les rotations R, R₁ et

 R_2 d'angle $\frac{\pi}{2}$ et de centre respectifs I, A et C

- 1)Caractériser S_(IA) o S_(AB)
- 2)Déterminer R(A);

En déduire la droite Δ telle que R=S $_{\Delta}$ oS $_{(IA)}$

- 3)Déterminer la nature et les éléments caractéristiques de f =RoR₁
- 4)Déterminer R₂oR₁(B). Caractériser R₂oR₁.

Exercice 9:

ABCD un carré direct de centre I, R et R' les

rotations d'angle $\frac{\pi}{2}$ et de centre respectifs A et C.

A' est le symétrique de A par rapport à B.

1)Déterminer R'(D) et R(B)

Déduire la nature du triangle ACA'

2)a)Soit $g = r' \circ R^{-1}$.

Déterminer g(A) puis caractériser g.

b) Soit f = R' o R, caractériser f.

3)Soit h =
$$t_{\overrightarrow{CA}}$$
 o R'-1

- a)Vérifier que R'-1 = $S_{(CA')}$ o $S_{(CD)}$
- b)Déterminer la droite Δ tel que = S_{Δ} o $S_{(CA')}$
- c)En déduire la nature et les éléments caractéristiques de h.

Exercice 10:

IJK est un triangle rectangle isocèle en I et direct.

O =J*K et H=I*J. R=r(O,
$$\frac{\pi}{2}$$
) et R'=r(I, $\frac{\pi}{2}$)

- 1)a)Montrer que R'=S_(OI) o S_(IJ)
- b)Montrer que R=S_(OH)oS_(OI)
- c)Déterminer la nature et les éléments
- caractéristiques de RoR'
- 2)Mque S_(IK)oRoR' est une symétrie glissante

- b)Montrer que f= $S_{(\mathbb{K})}$ o $t_{\overline{fl}}$ est une symétrie
- orthogonale que l'on précisera
- 3)Considérons le repère orthonormé (I, \overrightarrow{IJ} ; \overrightarrow{IK}) et
- g l'application du plan dans lui-même qui au point
- M(x,y) associe le points M'(x', y') tel que

$$\begin{cases} x' = 1 - x \\ y' = y \end{cases}$$

- a)Mque g est une isométrie
- b)Donner les images des points H, O, J par g
- c)En déduire que f =g

Exercice 11: (3 points)

On note H l'orthocentre d'un triangle équilatéral direct ABC et B' le milieu de [AC].

On désigne par r A, r B et r C les rotations de centres respectifs A, B et C et de même angle $\frac{\pi}{2}$.

On pose $f = r_A o r_B$, $g = r_C o r_B o r_A$ et $h = S_{(AC)} o S_{(AB)} o S_{(BC)}$

- 1) a) Déterminer f(C), f(B) et g (B)
- b) En déduire la nature et les éléments caractéristiques de f et de g.
- 2) Soit d la droite parallèle à (AC) passant par B
 - a) Montrer que $S_{(AB)}$ o $S_{(BC)} = S_d$ o $S_{(AB)}$
 - b) Déduire que h est une symétrie glissante.

Exercice 12:

Soit ABC un triangle rectangle direct en B tel que I le milieu de [AB], J le milieu de [AC], et Δ la droite perpendiculaire à (AB) en A.

1) Caractériser chacune des isométries

$$S_{I} \circ S_{(AB)}$$
, $S_{I} \circ S_{\Delta} et S_{I} \circ S_{A}$.

2) Soit E l'ensemble des isométries qui fixent A et qui transforme Δ en Δ .

Soit f un élément de E.

- a) Montrer que f n'est ni une translation de vecteur non nul ni une symétrie glissante.
- b) Montrer que si f est une symétrie orthogonale, alors $f = S_{(AB)}$ ou $f = S_{\Delta}$
 - c) Caractériser f lorsqu'elle est une rotation.
 - d) Déterminer alors l'ensemble E.
- **3)** Soit F l'ensemble des isométries qui transforment A en B et Δ en (BC).
- a) Mque $f \in F$ si et seulement si S_T o $f \in E$
- b) Déterminer alors l'ensemble F.

Par bac Math

