géme MATH

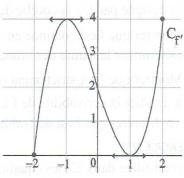
EXERCICE N°1

Soit f une fonction deux fois dérivables sur l'intervalle

[-2, 2]. Le graphique ci-contre représente la courbe $C_{\mathbf{f}'}$ de la fonction dérivée \mathbf{f}' de f.

- I. Répondre par vrai ou faux en justifiant la réponse.
- 1. f admet un minimum local en 1.
- 2. La courbe de f admet deux points d'inflexions.

II. Pour tout $n \ge 2$, l'équation $f'(x) = \frac{4}{n}$ admet une solution $\alpha_n \in [0, 1[$ et une solution $\beta_n \in]1, 2[$.



Pour chacune des questions suivantes une ou plusieurs réponses proposées sont exactes. Indiquer, sur la copie, chaque réponse correcte.

- 1. La suite (α_n) est :
- a. croissante.
- b. minorée.

c. convergente.

- 2. Les suites (α_n) et (β_n) sont :
- a. croissantes.
- b. bornées.

c.
$$\lim_{n\to+\infty} \alpha_n = \lim_{n\to+\infty} \beta_n$$

EXERCICE N°2

I/ Soit g la fonction définie sur] $-\infty$, 0[par g(x) = $x^2 \left(1 - \cos\left(\frac{\pi}{x}\right)\right)$

On désigne par C_g la courbe représentative de g dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- ① Déterminer $\lim_{x\to -\infty} g(x)$ et $\lim_{x\to 0^-} g(x)$.
- ② Montrer que g est dérivable sur $]-\infty$, 0[et déterminer g'(x) pour tout $x \in]-\infty$, 0[.

II/ Soit f la fonction définie sur \mathbb{R} par $f(x) = \begin{cases} g(x) & \text{si } x \le -1 \\ -4x - 2 & \text{si } -1 < x < 0 \\ x - 1 - \sqrt{x^2 + 1} & \text{si } x \ge 0 \end{cases}$

On désigne par C_f la courbe représentative de f dans le repère orthonormé (O, \vec{i}, \vec{j}) .

- ② Etudier la dérivabilité de f en -1 et en 0. Interpréter graphiquement les résultats.

EXERCICE N°3

Soit f la fonction définie sur
$$\mathbb{R}$$
 par
$$\begin{cases} f(x) = 2 + \cos\left(\frac{\pi}{x}\right) & \text{si } x \in]-\infty, -1] \\ f(x) = \frac{2(\sqrt{x+2}-1)}{x+1} & \text{si } x \in]-1, +\infty[\end{cases}$$

On désigne par C_f la courbe de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1. Montrer que f est continue en -1.
- 2. Déterminer la nature des branches infinies de C_f. Malliage de Zual de 1814
- 3. Montrer que f est strictement décroissante sur chacun des intervalles $]-\infty, -1]$ et $]-1, +\infty[$
- 4. a. Etudier la dérivabilité de f à droite en −1.
 - b. Montrer que f est dérivable à gauche en -1 et que $f'_g(-1) = 0$. 5. Tracer C_f .

EXERCICE N°4

On considère dans C, les équations :

(E):
$$Z^3 - 2i\sqrt{3}Z^2 - 6Z + 3i\sqrt{3} = 0$$
 et (E'): $Z^3 + 2i\sqrt{3}Z^2 - 6Z - 3i\sqrt{3} = 0$.

- \oplus a) Vérifier que i $\sqrt{3}$ est une solution de (E). b) Résoudre dans \mathbb{C} l'équation (E).
- c) Donner l'écriture exponentielle de chacune des solutions de (E).
- ② En déduire les solutions de l'équation (E').
- ③ Le plan est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

Montrer que les points images des solutions de (E) et de (E') forment un hexagone régulier

1