* Lycée 18 Janvier Djebniana *

SÉRIE N°18

Thème: Isométries

Niveau : Bac Math. Année Scolaire : 2019-2020

Prof: 🖾 BenMbarek Mahmoud 🖾

Exercice N° 1 **

Répondre par vrai ou faux en justifiant :

- Si Δ est laxe d'une symétrie f alors pour tout point $M \in \Delta$ on a : f(M) = M
- 2 Si une isométrie f n'admet aucun point invariant alors f est une symétrie glissante.
- 3 Si f est une isométrie qui n'admet aucun point fixe alors f o f est une translation.
- Toute rotation $R_{(I;\alpha)}$ se décompose d'une manière unique sous la forme $R = S_{(Iy)} \circ S_{(Ix)}$ avec $2(\overrightarrow{IX}, \overrightarrow{Iy}) \equiv \alpha[2\pi]$
- 6 Si une isométrie f fixe deux points distincts A et B alors $f = S_{(AB)}$.
- ABCD étant un parallélogramme de centre O. $S_{(AD)} \circ S_O = S_{(BC)}$ si et seulement si ABCD est losange.
- Dans le plan orienté, on considère les points A(1;1), B(2;0), C(3;-1), E(1;5) et F(0;6). Si f est une isométrie telle que f(A) = E et f(B) = F alors f(C) est le barycentre des points pondérés (E;1) et (F;-2).
- 9 I est le milieu du segment [AB]. $S_{(IB)} \circ t_{\overrightarrow{AI}} \circ S_{(AB)} = t_{\overrightarrow{IB}}$
- Soit ABCD un carré. L'isométrie $S_{(AD)} \circ S_{(AB)} \circ S_{(BC)}$ est la symétrie glissante d'axe (AB) et de vecteur $2\overrightarrow{BA}$
- Soient Δ et Δ' deux droites perpendiculaires. Si f et g sont deux symétries glissantes d'axes respectifs Δ et Δ' alors f o g est une symétrie centrale.

Exercice N° 2 $\star \star \star$

On considère un triangle ABC isocèle en A.

On désigne par D l'image de B par la symétrie Orthogonale d'axe (AC) et par I le milieu du segment [BC].

Soit f une isométrie laissant A invariant et transformant B et C respectivement en C et D. On pose $g = S_{(AC)} \circ f$.

1 Déterminer g(A), g(B), g(C) et g(I).

2

Montrer que g est une symétrie orthogonale

Exercice N° 3 ***

Soit ABC un triangle équilatéral direct. On désigne par I le milieu de [AC] et par Δ la droite passant par B et parallèle à (AC). Soit J un point de [BA] distinct de B.

La droite passant par J et parallèle à (AC) coupe [BC] en un point K.

 $oxed{1}$ Caractériser : $S_{(AC)} \circ S_{\Delta}$ et $S_{(KJ)} \circ S_{(AC)}$

2 Identifier: $f = S_{(AC)} \circ S_{\Delta} \circ S_{(KJ)} \circ S_{(AC)}$

3 Déterminer la position du point J sur [BA] pour que f soit la translation de vecteur \overrightarrow{CJ}

Exercice N° 4 ***

Soit OAB un triangle équilatéral direct. On désigne par Δ la droite perpendiculaire à (OA) en O, par $\mathcal D$ la médiatrice de [AB] et par S_1 ; S_2 ; S_3 et S_4 les symétries orthogonales d'axes respectifs (OA), (OB), Δ et $\mathcal D$. On note : $f = S_3 \circ S_2 \circ S_1$

Montrer que : $f = S_3 \circ R$ où R est une rotation que l'on caractérisera.

Montrer que : $R = S_3 \circ S_4$

3 Identifier f

Exercice N° 5 $\star \star \star$

ABCD un carré direct. Δ est la médiatrice du segment [BC]. Soit f une isométrie distincte de la symétrie S_{Δ} et telle que f(B) = C et f(D) = A

Montrer que le point $O = B \star D$ est invariant par f et que c'est l'unique point du plan invariant par f.

b En déduire la nature et les éléments caractéristiques de f.

Soit $g = f \circ S_{\Delta}$ et $\varphi = S_{\Delta} \circ f$

a Trouver g(A) et g(C). En déduire g.

b Montrer que $\varphi = S_{(BD)}$.

c En déduire la nature de $g \circ φ$.

Exercice N° 6 ***

ABCD est un losange tel que $(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{3} [2\pi]$. On désigne par I ; J ; K ; L et O les milieux respectifs des segments [AB], [BC], [CD], [DA] et [BD]. On note Δ la médiatrice du segment [AB] et Δ' celle de [CD].

Soit f l'isométrie définie par : f(A) = B; f(B) = D et f(D) = C.

a Montrer que f n'admet pas des points fixes.

b Déduire la nature de f.

Soit **R** la rotation de centre **B** et d'angle $-\frac{\pi}{3}$

- **a** Montrer que $f = R \circ S_{\Delta}$
- **b** A-t-on $f = S_{\Delta} \circ R$. (Justifier)
- a Définir l'isométrie h telle que $R = S_{(BC)} \circ h$.
 - **b** En déduire que f peut s'écrire sous la forme $f = S_{(BC)} \circ T$ où T est une translation à préciser.
- Soit $T' = t_{\frac{1}{2}} \overrightarrow{AD}$ et on pose $g = (T')^{-1}$ o f
 - **a** Déterminer : g(D), g(I) et g(O)
 - **b** En déduire la nature et les éléments caractéristiques de **g**.
 - \bigcirc Montrer que $f = T' \circ g$.





