c) Montrer que l'équation $f(x) = \frac{1}{3}$ admet une solution unique α dans l'intervalle]10, 11[.

Déterminer une valeur approchée de α à 10^{-1} prés.

Soit f la fonction définie sur \mathbb{R} par $\begin{cases} f(x) = \frac{x + \cos(\pi x)}{x - 1} & \text{si } x \in]-\infty, 1[, \\ f(x) = \sqrt{x^2 + x + 2} - x & \text{si } x \in [1, +\infty[]] \end{cases}$

1. Déterminer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$.

2. Montrer que f est continue sur \mathbb{R} .

3. a) Montrer que l'équation f(x) = 0 admet au moins une solution α dans $\left[-\frac{1}{2}, 0 \right]$.

b) En déduire que $\sin(\pi\alpha) = -\sqrt{1-\alpha^2}$.

4. Soit g la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $\left\{g\left(x\right) = f\left(\frac{1}{\cos x}\right) \quad \text{si } x \in \left[0, \frac{\pi}{2}\right], \right\}$

Montrer que g est continue sur $\left[0, \frac{\pi}{2}\right]$.

Soit f la fonction définie sur $\left[-\frac{9}{2}, +\infty\right[$ par $\begin{cases} f(x) = \frac{\sqrt{2x+9-3}}{2x} & \text{si } x \neq 0, \\ f(0) = \frac{1}{6}. & \text{si } x \neq 0, \end{cases}$

① a) Montrer que f est continue sur $\left[-\frac{9}{2}, +\infty\right[$.

b) Déterminer $\lim_{x \to +\infty} f(x)$. Interpréter le résultat.

② a) Vérifier que pour tout $x \in \left[-\frac{9}{2}, +\infty\right]$, $f(x) = \frac{1}{\sqrt{2x+9}+3}$.

b) Montrer alors que f est strictement décroissante sur $\left[-\frac{9}{2}, +\infty\right]$ puis déterminer $f\left(\left[-\frac{9}{2}, +\infty\right]\right)$.

3 Montrer que l'équation f(x) = x admet dans [0, 1] une unique solution α .

① Soit g la fonction définie sur $\left[0, \frac{1}{3}\right]$ par $g(x) = \frac{1-6x}{2x^2}$ et $h = g \circ f$.

a) déterminer l'ensemble de définition D_h de h et expliciter h(x) pour tout $x \in D$.

b) En déduire $g\left(\frac{-3+\sqrt{11}}{2}\right)$.

Soit F la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $\begin{cases} F(x) = f\left(\frac{9}{2}\tan^2 x\right) \text{ si } x \in \left[0, \frac{\pi}{2}\right], \text{ final and the problem of } F\left(\frac{\pi}{2}\right) = 0. \end{cases}$

a) Vérifierque pour tout $x \in \left[0, \frac{\pi}{2}\right]$, $F(x) = \frac{\cos x}{3(1 + \cos x)}$.

b) Montrer que F est continue sur $\left[0, \frac{\pi}{2}\right]$.

c) Dresser le tableau de variation de F sur $\left[0, \frac{\pi}{2}\right]$