Exercice n°2: (6 points)

Le plan est muni d'un repère orthonormé direct (O, u, v). (L'unité graphique étant 8 cm).

On considère les points A et B d'affixes respectives $\left(-1\right)$ et 1 .

Soit z un nombre complexe différent de 0, 1 et (-1). On note M, N et P les points d'affixes respectives z, z^2 et z^3

- 1- Justifier que les points M, N et P sont deux à deux distincts.
- 2- Dans cette question, on prend : $z = -\frac{1}{4} + i \frac{\sqrt{3}}{4}$.
 - a-Donner l'écriture exponentielle de chacun des nombres complexes z, z² et z³.
 - b- Construire dans un repère (O, \vec{u}, \vec{v}) les points M, N et P.
 - c-Donner l'écriture algébrique de $\frac{z_p-z_N}{z_p-z_M}$.
 - d- En déduire la nature du triangle MNP. Les endemon tout à lup at noite aloque le roblemes au
- 3- Soit E l'ensemble des points M du plan telque MNP soit un triangle rectangle en P.
 - a-Montrer que $MP^2 + NP^2 = MN^2$ si et seulement si $|z+1|^2 + |z|^2 = 1$.
 - b- Montrer alors que MNP est un triangle rectangle en P si et seulement si $\left(z + \frac{1}{2}\right)\left(\overline{z} + \frac{1}{2}\right) = \frac{1}{4}$.
 - c- Déterminer alors et construire l'ensemble E.
- 4- On pose $z = re^{i\theta}$ où $\theta \in]-\pi,\pi]$ et r un réel strictement positif.
 - a- Déterminer les valeurs de θ pour lesquelles P appartient à la demi-droite [OB).
 - b- Déterminer les affixes des points M tels que le triangle MNP soit rectangle en P et que P appartienne à la demi-droite [OB).

Exercice n°2: $0 = (5 \text{ points}) \text{ (182 + 1)} = 0 = (6 \text{ m/2} + 1) = (6 \text{ m/2} + 1) = 0 = (6 \text{ m/2} + 1) = (6 \text{$

Le plan est rapporté à un repère orthonormé direct $\left(O,\vec{u},\vec{v}\right)$.

Soit dans \mathbb{C} , l'équation (E): $iz^2 + (2\sin\theta)z - 2i(1+\cos\theta) = 0$ avec $\theta \in]-\pi$, π].

- 1-a- Vérifier que : $\sin^2 \theta 2(1 + \cos \theta) = [i(1 + \cos \theta)]^2$.
 - b-Résoudre dans C, l'équation (E).
- 2- Soient M' et M" les points de du plan d'affixes respectives : $z' = 1 + \cos\theta + i\sin\theta$ et $z'' = -1 \cos\theta + i\sin\theta$.
 - a- Ecrire sous forme exponentielle z' et z".
 - b- Déterminer et construire l'ensemble ζ, des points M' et en déduire l'ensemble des points M''. αουδωρθ' à Δ
- 3- Montrer que pour tout $\theta \in]-\pi$, $\pi[: \frac{z'}{z''} = e^{i(\theta \pi)}$ et en déduire les valeurs de θ pour lesquelles OM'M'' est un triangle équilatéral.
- 4- Pour $\theta = \frac{2\pi}{3}$, résoudre l'équation : $iz^6 + (2\sin\theta)z^3 2i(1+\cos\theta) = 0$

<u>موقع مراجعة باكالوريا</u> BAC.MOURAJAA.CON

Soit f la fonction définie sur IR par

$$\begin{cases} f(x) = x^2 \sin\left(\frac{\pi}{x}\right) + 1 & \text{si } x \in]-\infty, 0 \end{cases}$$

$$f(x) = \frac{2 - \sqrt{x}}{2 + \sqrt{x}}$$
 si $x \in [0, +\infty[$

1-a- Montrer que pour tout $x \in]-\infty, 0[:-x^2+1] \le f(x) \le x^2+1$. Semicador o regar de la main se na la silone de la main de la main

b- En déduire que f est continue en zéro.

2-a- Montrer que $\lim_{x \to \infty} f(x) = -\infty$.

b-Calculer la limite de f en (+\infty) et interpréter graphiquement le résultat. L'installable exologique ordinant no vitore

3- Soit g la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par : $g(x) = f(\tan x)$ and $g(x) = f(\tan x)$ and g(x) = g(x) = g(x) par : g(x) = g(x) par :

a-Montrer que la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon sels numbres de la linear que la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon sels numbres de la linear que la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon sels numbres de la linear que la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon sels numbres de la linear que la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon sels numbres de la linear que la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon sels numbres de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon sels numbres de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon sels numbres de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon sels numbres de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon sels numbres de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon sels numbres de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon sels numbres de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon sels numbres de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendinon de la fonction g est continue sur $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ o sendin

b-Calculer la limite de g à gauche en $\frac{\pi}{2}$.

EXERCICE Nº 1:(8 points)

Soit $\theta \in]-\pi,\pi[$, on considère l'application f_θ qui à tout nombre complexe z de $\mathbb{C}\setminus \{e^{i\theta}\}$ su si stimbét nel 4 associe le nombre complexe $f_\theta(z) = \frac{1+e^{i\theta}z}{e^{i\theta}-z}$ neut no regulation qui blue sant qui blue sant qui blue sant qui blue soit de la liois $-\mathbb{C}$

l-1- Vérifier que si $\theta = \frac{\pi}{2}$ ou $\theta = -\frac{\pi}{2}$, alors l'application f_{θ} est constante.

2- On pose $\theta = 0$.

a- Montrer que pour tout nombre complexes z et z' de $\mathbb{C}\setminus\{-1,1\}$: $f_0(z)=z'\Leftrightarrow z=-f_0(-z')$

b- Soit α un réel différent de $2k\pi$ $(k \in \mathbb{Z})$, montrer que : $f_0(e^{i\alpha}) = i\cot an\left(\frac{\alpha}{2}\right)$.

c- Déterminer les racines carrées du nombre complexe $\frac{\sqrt{2}}{2}(1+i)$.

d- En déduire les solutions dans \mathbb{C} de l'équation : $(1+z)^2 = \frac{\sqrt{2}}{2}(1+i)(1-z)^2$. En déduire les solutions dans \mathbb{C} de l'équation : $(1+z)^2 = \frac{\sqrt{2}}{2}(1+i)(1-z)^2$.

II-On suppose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit soit soit se des points. Meta que le triangle MANP soit se de soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi,\pi[\sqrt{\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}}]$ soit se de la compose que $\theta \in]-\pi$ se de l

1-a- Résoudre dans \mathbb{C} , l'équation : $z^2 - 2iz\sin\theta - 1 = 0$.

b-Vérifier que i est une solution de l'équation (E) : $z^3 - i(1 + 2\sin\theta)z^2 - (1 + 2\sin\theta)z + i = 0$.

c-Résoudre alors dans ${\Bbb C}$ l'équation (E).

2- Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On désigne par A, B, M et M' les points d'affixes respectives $e^{i\theta}$, $-e^{-i\theta}$, z et $z'=f_{\theta}(z)$.

a- Montrer que pour tout point M distinct de A et B on a : $(\vec{u}, \overrightarrow{OM'}) = \pi + \theta + (\overrightarrow{MA}, \overrightarrow{MB})[2\pi]$.

b-Pour $\theta = \frac{\pi}{4}$, déterminer et construire l'ensemble des points M lorsque M' décrit la demi-droite

 Δ d'équation : x > 0 net y = -x d'especial de la construir d'ensemble C_{+} des points V_{-} et en déduire l'ensemble X_{-} et X_{-} des points X_{-} et en déduire l'ensemble X_{-} et X_{-}

Exercice n°1:

- 1- soit, dans \mathbb{C} , l'équation (E): $z^3 + (1-2i)z^2 (1+6i)z 5 = 0$.
 - a-montrer que (E) admet une solution imaginaire pure que l'on déterminera.
 - b-Résoudre dans C, l'équation (E).
- 2- Dans le plan complexe P rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) on donne les points A, B et C d'affixes respectives i, -2-i et 1+2i, montrer que A,B et C sont alignés.
- 3- Soit $P \setminus \{A\} \rightarrow P : M(z) \mapsto M'(z')$ telle que $z' = \frac{5i z}{z i}$.

Vérifier que $z'+1=\frac{4i}{z-i}$ et déterminer l'ensemble des points M' lorsque M décrit le cercle c(A,4).

4- a- Soit le point E (5i), montrer que $(\overrightarrow{u}, \overrightarrow{OM'}) = \pi + (\overrightarrow{MA}, \overrightarrow{ME})[2\pi]$.

b- En déduire l'ensemble des points M lorsque z' est un nombre imaginaire pur.

- 5- Soit $\theta \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, on pose $z = e^{i\theta}$:
 - a-Montrer que $z-i=2\cos\left(\frac{\theta}{2}+\frac{\pi}{4}\right)e^{i\left(\frac{\theta}{2}-\frac{\pi}{4}\right)}$.

b- En déduire la forme exponentielle de z'+1 et déterminer θ pour que $\left|z'+1\right|=2\sqrt{2}$.

Exercice n°2:

Soit dans \mathbb{C} l'équation (E): $z^3 + \alpha z^2 - \overline{\alpha} z - 1 = 0$.

- 1- Vérifier que si z_0 est une solution de (E) alors $\frac{1}{\overline{z}_0}$ est aussi une solution de (E).
- 2- On pose $\alpha = e^{i\theta}$ avec θ un réel.
 - a- Vérifier que $-\alpha$ est une solution de (E).
 - b- Résoudre alors l'équation (E).
- 3- En déduire les solutions de l'équation (E') : $2z^3 + (1+i\sqrt{3})z^2 (1-i\sqrt{3})z 2 = 0$.

Exercice n°3:

Soit l'application f: \mathbb{C} \longrightarrow \mathbb{C} , \mathbb{Z} \longrightarrow \mathbb{Z}^4 \longrightarrow \mathbb{Z}^3 $+\frac{9}{2}\mathbb{Z}^2$ \longrightarrow \mathbb{Z}^4 \longrightarrow \mathbb{Z}^4

1-a- Comparer $f(\bar{z}_0)$ $\sqrt[4]{f(z_0)}$, En déduire que si z_0 est une solution de l'équation (E) : f(z) = 0 alors \bar{z}_0 est aussi solution de cette équation .

- b-Exprimer $f(\frac{1}{z_0})$ en fonction de $f(z_0)$ pour tout z_0 de \mathbb{C}^* . Conclure.
- c-Calculer f(1 + i). En déduire les solutions de l'équation (E)
- 2- Utiliser la factorisation de f(z) dans $\mathbb C$ pour déduire une factorisation dans IR de la restriction g de f à IR en deux facteurs du second degré .

Exercice n°4:

1- Dans l'ensemble C des nombres complexes, on considère l'équation (E_m) : $\overline{m}z^3 - 3mz - m^2 = 0$; où m est nombre complexe donné de module 2.

Vérifier que m est une solution dans C de l'équation (E_m) puis résoudre dans C l'équation (E_m).

2- En déduire les solutions dans C de l'équation $(E')(1-i\sqrt{3})z^6-3(1+i\sqrt{3})z^2+2(1-i\sqrt{3})=0$ On donnera les solutions sous forme exponentielle.

Exercice n°5:

1- Soit (E):
$$z^3 - 2(1+i)z^2 + 2(2i+1)z - 4i = 0$$
, $z \in \mathbb{C}$.

Vérifier que 2i est une solution de (E) et résoudre dans C l'équation .

2- Soit (E'):
$$z^2 - 2z + 1 - e^{i2\theta} = 0$$
 où $\theta \in]0, \pi[$

a-Résoudre dans \mathbb{C} l'équation (E') on notera \mathfrak{F}_1 , la solution tel que $\operatorname{im}(z_1) > 0, z_2$, l'autre solution.

b- Vérifier que
$$z_1 = 2\cos\frac{\theta}{2}e^{i\frac{\theta}{2}}$$
 et $z_2 = -2i\sin\frac{\theta}{2}e^{i\frac{\theta}{2}}$

3- Le plan étant rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) .

On donne
$$M_1(1+e^{i\theta})$$
 , $M_2(1-e^{i\theta})$ et $A(2)$

b-Déterminer
$$\theta$$
 pour que OM_1AM_2 soit un losange.

4- Soit
$$f: P \setminus \{B\} \to P: M(z) \to M'(z')$$
 tel que $z' = \frac{1+z}{1-z}$ avec B le point d'affixe 1.

c-Montrer que si
$$z' = e^{i\theta}$$
 alors $z = i \cot an \frac{\theta}{2}$, avec $\theta \in]0, \pi[$.

d-Résoudre alors dans
$$\mathbb{C}$$
 l'équation $(1+z)^4 = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)(1-z)^4$

Exercice n°6:

Le plan complexe P est rapporté à un repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$. On considère le **point** A d'affixe 1 et l'application $f: P \to P$; $M(z) \mapsto M'(z')$ telquez' = $2z - z^2$

- 1- Déterminer les points invariants par f.
- 2- On désigne par M_1 et M_2 les points d'affixes respectives z^2 et 2z.
 - a- Déterminer l'ensemble des points M(z) tels que les points O,M_1 et M_2 soient alignés.
 - b- On suppose que M n'appartient pas à l'axe des abscisses. Montrer que OM₁M₂M' est un parallélogramme.
- 3- On suppose que M appartient au cercle Γ de centre O et de rayon 1.

a- Montrer que AM = MM' et que
$$\frac{z'-1}{z}$$
 est réel.

b- En déduire que A et M' sont symétriques par rapport à la tangente
$$\Delta$$
 à Γ en M.

4-a- Résoudre dans
$$\mathbb{C}$$
, l'équation (E)2z – $z^2 = 1 + e^{i2\theta}$ où $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right[$.

(On notera z_1 et z_2 les solutions de (E) tel que $\text{Im}(z_1) > 0$).

- b- Ecrire z₁ et z₂ sous forme exponentielle.
- c-Montrer que $N_1(z_1)$ et $N_2(z_2)$ sont symétriques par rapport à un point fixe à préciser.
- d- Déterminer et construire l'ensemble E_1 des points N_1 lorsque θ décrit $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. En déduire l'ensemble E_2 des points N_2 lorsque θ décrit $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

