4emeMATH

EXERCICE N°1

On considère la famille des fonctions f_n définies par : $f_n: x \mapsto x^n \sqrt{2-x}$ pour tout entier naturel non nul n ; on note (C_n) sa courbe représentative dans un repère orthonormé.

- 1) Etudier la dérivabilité à gauche de f_n en 2
- 2) Montrer que toutes les courbes (Cn) passent par trois points fixes
- 3) a) Etudier f₁et tracer sa courbe (C₁) (on précisera la tangente au point d'abscisse 0)
 - b) Représenter à partir de (C₁) la courbe (C') de la fonction définie par $h(x) = |x| \sqrt{2-x}$
- 4) Søit n un entier naturel supérieur où égale à 2

Dresser le tableau de variation de fn (On distinguera les cas où n'est pair et n'est impair)

EXERCICE N°2

Soit n un entier naturel non nul et différent de 1 ;on considère la fonction f_n définie sur IR, par $f_n(x) = x^n + x - \frac{1}{2}$

- 1) Montrer que l'équation $f_n(x) = 0$ admet une unique solution α_n dans $\left[0, \frac{1}{2}\right[$
- 2) a) Montrer que $f_{n-1}(\alpha_n) = \alpha_n^n (\alpha_n 1)$
- b) Montrer que la suite α_n est croissante et déduire qu'elle converge
- 3)a) Montrer que pour tout $n \ge 2$; $(\alpha_n)^n \le \left(\frac{1}{2}\right)^n$
- b) Déduire que α_n converge vers $\frac{1}{2}$
- 4) Pour tout n de $\mathbb{N}^* \setminus \{1\}$ on pose $u_n = (\alpha_2)^2 + (\alpha_3)^3 + (\alpha_4)^4 + \dots + (\alpha_{n+1})^{n+1}$
- a) Montrer que $u_n \le \frac{1}{2} \left(1 \left(\frac{1}{2} \right)^n \right)$ Déduire que u_n est convergente vers un réel let que $\frac{1}{2} \frac{\sqrt{3}}{2} \le l \le \frac{1}{2}$
- 5) calculer $\lim_{n\to+\infty} \frac{1}{n} (\alpha_2 + \alpha_3 + \alpha_4 + \dots + \alpha_{n+1})$

EXERCICE N°3

On donne la fonction f définie sur $]0,+\infty[$ dont la représentation graphique dans un repère orthonormé (O,\vec{i},\vec{j}) est la courbe ζ représenté ci contre

1) calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$, $\lim_{x \to 1} \frac{f(x)}{x-1}$, $\lim_{x \to \frac{\pi}{2}} \frac{f(\sin x)}{x-\frac{\pi}{2}}$, puis dresser le tableau de variation de f

Dans la suite de l'exercice on donne $f'(x) = \frac{1}{x} pour \ x \in]0, +\infty[$

Soit g la fonction définie sur \mathbb{R} par $g(x) = f(1+x^2)$

- 2) a)Montrer que g est dérivable sur R
- b) dresser le tableau de variation de g
- c)tracer la courbe de g (Caster-e

e de de de