Exercice n°1:

Soit (U_n) la suite définie sur IN par $:U_0=1$ et pour tout $n \in IN$ $U_{n+1}=\left(\frac{n+2}{2n+2}\right)U_n$.

- 1- Montrer que pour tout $n \in IN$: $0 < U_n \le 1$.
- 2- Montrer que la suite (Un) est décroissante.
- 3- En déduire qu'elle est convergente puis montrer que $\lim_{n\to+\infty} U_n = 0$.
- 4-Soit (V_n) la suite définie sur IN par : $V_n = \frac{U_n}{n+1}$.
 - a-Montrer que la suite $\left(V_{n}\right)$ est géométrique dont on précisera la raison et le premier terme.
 - b-Exprimer V_n puis U_n en fonction de n.
 - c- En déduire $\lim_{n\to +\infty} \frac{n}{2^n}$.

Exercice n°2:

Soit U la suite définie sur IN par : $U_0 = 0$ et pour tout $n \in IN$: $U_{n+1} = \frac{U_n + 1}{\sqrt{U_n^2 + 3}}$

- 1- Montrer que pour tout $n \in IN : 0 \le U_n < 1$
- 2-a- Montrer que pour tout $n \in IN : U_{n+1} > \frac{1 + U_n}{2}$
 - b- En déduire que la suite U est croissante et qu'elle est convergente.
- 3- Montrer que pour tout $n \in IN : 0 < 1 U_{n+1} < \frac{1}{2}(1 U_n)$ et calculer alors la limite de U_n en $+\infty$.
- 4- On pose pour tout $\, n \in IN \, : \, S_n = \sum_{k=0}^n U_k \,$

Montrer que pour tout $n \in IN$: $n-1 \le S_n \le n+1$ et en déduire la limite $\frac{Sn}{n}$ en $+\infty$.

Exercice n°3:

Soit (U_n) la suite définie sur IN^* par : $U_n = \frac{n}{2^{n-1}}$.

- 1-a- Montrer que pour tout $n \in \mathbb{N}^*$: $\frac{U_{n+1}}{U_n} \le 1$ et en déduire que la suite (U_n) est décroissante.
 - b-Prouver alors que la suite $\left(U_{\scriptscriptstyle n}\right)$ est convergente .
- $\text{2-Montrer que pour tout } n \in \text{IN}^*: \ U_{n+1} = \frac{1}{2} \ U_n + \frac{1}{2^n} \ \text{ et en déduire que } \lim_{x \to +\infty} U_n = 0 \, .$
- 3- Soit pour tout $n \in IN^*$: $S_n = 1 + \frac{2}{2^1} + \frac{3}{2^2} + \frac{4}{2^3} + \dots + \frac{n}{2^{n-1}}$

Montrer que pour tout $n \in IN^*$: $S_n = -U_n + 4\left(1 - \frac{1}{2^n}\right)$ et en déduire la limite de S_n .

Exercice n°4:

Soit $(U_n)_{n\in\mathbb{N}}$ la suite réelle définie par : $U_0=0$ et $U_{n+1}=\frac{2}{\sqrt{4-U_n^2}}$ pour tout $n\in\mathbb{N}$

- 1-a- Montrer que, pour tout $n \in IN$, on a : $0 \le U_n < \sqrt{2}$.
- b-Montrer que la suite (Un) est croissante et qu'elle est convergente vers une limite qu'on précise

 $2 - U_n^2 \text{ exposs total neighbors } S_n = \sum_{k=1}^n \frac{1}{n + \sqrt{V_k}}$

a- Montrer que $\left(V_{_{n}}\right)_{_{n\in\mathbb{N}}}$ est une suite arithmétique de raison 2 et en déduire $\ U_{^{n}}$ en fonction de n.

b-Soit $n \in \mathbb{IN}^*$, montrer que pour tout $k \in \{1, \dots, n\}$; on a : $\frac{1}{n + \sqrt{V_n}} \le \frac{1}{n + \sqrt{V_k}} \le \frac{1}{n + \sqrt{V_k}}$

c- En déduire que (S_n) est convergente et calculer sa limite.

Exercice n°5:

Soit la suite $(U_n)_{n\in\mathbb{N}^*}$ définie par $U_n = \sum_{k=0}^n \frac{n}{n^3 + k}$

- 1) Calculer U1 et U2.
- 2) Démontrer que $\forall n \in IN^*$ on $a: \frac{n+1}{n^2+1} \le U_n \le \frac{1+n}{n^2}$
- 3) Démontrer que la suite U converge vers 0.

Exercice n°6:

Soit (U_n) la suite définie sur IN par $: U_n = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots + \frac{1}{2n+1} = \sum_{k=0}^{n} \frac{1}{2k+1}$

1-a- Montrer que la suite $\left(U_{n}\right)$ est croissante.

- b-Montrer que pour tout $n \in IN$: $U_{2n} U_n \ge \frac{n}{4n+1}$.
- c-Montrer alors que $\lim_{n\to+\infty} U_n = +\infty$
- 2- Soit(V_n) la suite définie sur IN par : $V_n = \frac{U_n}{n^2}$.
 - a-Montrer que pour tout $n \in IN$: $\frac{n+1}{2n+1} \le U_n \le n+1$.
 - b- En déduire que la suite (V_n) est convergente et déterminer sa limite.

Exercice n°7:

Soit $n \in IN$ et f_n l'application définie sur IR par : $f_n(x) = x^3 + 3(n+1)x + 1$

- 1) a) Dresser le tableau de variation de fn.
- b) Montrer que l'équation $f_n(x) = 0$ admet dans IR une solution unique notée α_n et que $\alpha_n \in]-1,0[$.
- 2) a) Montrer que pour tout $x \in]-1,0[$ et pour tout $n \in IN$ on a $f_{n+1}(x) < f_n(x)$.
 - b) En déduire que la suite (α_n) est strictement croissante et qu'elle est convergente.
 - c) Montrer que pour tout $n \in IN$, on a $\alpha_n = \frac{-1}{\alpha_n^2 + 3(n+1)}$ puis calculer $\lim_{n \to \infty} \alpha_n$.

