EXERCICE 1:

Le plan est muni d'un repère orthonormé direct $(0, \overrightarrow{OI}, \overrightarrow{OI})$. On considère les points A(2)et B(3).

Soit Z un nombre complexe différent de 2 et $Z'=\frac{\overline{Z}-3}{\overline{Z}-2}$. On désigne par M et M' les points d'affixes respectives Z et Z'

- 1) a) Vérifier que $Z' 1 = \frac{-1}{\bar{z}-2}$.
 - b) En déduire que $IM' \times AM = 1$ et $(\widehat{AM}, \widehat{IM'}) \equiv \pi[2\pi]$.
- 2) Construire le point M' lorsque M est un point du cercle C_1 de centre A et de rayon I.
- 3) Dans cette question, le point M appartient au cercle C_2 de centre B et de rayon I.
 - a) Montrer qu'il existe un réel θ de $]-\pi,\pi[$ tel que $Z=3+e^{i\theta}.$
 - b) Ecrire Z'-1 sous forme exponentielle.
 - c) Montrer que M' appartient à la droite Δ : $x = \frac{1}{2}$.
 - d) Construire alors le point M'.

EXERCICE 2:

Soit le nombre complexe $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$

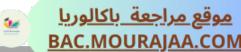
- 1) a) Calculer j2 et j3
 - b) Montrer que $1 + j + j^2 = 0$
- 2) Soit a, b, c trois nombres complexes tel que $a + bj + cj^2 = 0$
 - a) Montrer que |a-b| = |b-c| = |c-a|
 - b) Soit A(1+i) et B(-i), déterminer un point C pour que le triangle ABC soit équilatéral

EXERCICE 3:

- 1) Résoudre dans \mathcal{C} l'équation $z^5 + 1 = 0$. On donnera les solutions sous forme exponentielle.
- 2) En déduire que pour tout nombre complexe z, on a :

$$z^5 + 1 = (z+1)(z^2 - 2z\cos\frac{\pi}{5} + 1)(z^2 - 2z\cos\frac{3\pi}{5} + 1).$$

3) En déduire la valeur de $\cos \frac{\pi}{5}$ et celle de $\cos \frac{3\pi}{5}$.



EXERCICE 4: (D.C 2019)

1) Soit Z un nombre complexe d'argument $\frac{\pi}{5}$ tel que |Z| = |Z-1|.

Déterminer un argument de 1-Z.

2) A(a), B(b) et C(c) sont les sommets d'un triangle.

Montrer que : ABC est équilatéral si et seulement si $a^2 + b^2 + c^2 = ab + bc + ac$.

3) On désigne par $Z_k = e^{i\frac{2k\pi}{2020}}$, $k \in \{0, 1, 2, 3,, 2019\}$.

Calculer chacun des nombres complexes suivants :

$$S = Z_1 + Z_5 + Z_9 + \dots + Z_{2017}$$
 et $T = Z_1 + \overline{Z_3} + Z_5 + \overline{Z_7} + Z_9 + \overline{Z_{11}} + \dots + Z_{2017} + \overline{Z_{2019}}$

EXERCICE 5:

Soit A et B les points d'affixes respectives 1 et 2.

- 1) Déterminer et construire l'ensemble Δ des points M, d'affixe z, du plan tels que |z-2|=|z-1|.
- 2) Soit θ un réel différent de $2k\pi$, où k est entier.

Montrer:
$$\frac{z-2}{z-1} = e^{i\theta}$$
 équivaut à $z = \frac{3}{2} + \frac{1}{2}i \cot(\frac{\theta}{2})$.

3) Soit Γ l'ensemble des points M du plan tels que $(MA \cdot MB) = \frac{\pi}{6} [2\pi]$

 Δ et Γ se coupent en un point Ω . Construire Ω et déterminer son affixe.

4) Soit n un entier naturel non nul. On considère dans l'ensemble des nombres complexes ${\mathcal C}$

l'équation (E):
$$\left(\frac{z-2}{z-1}\right)^n = \xi$$

a) Soit M le point image dans le plan d'une solution z de l'équation (E).

Montrer que M appartient à Δ et $(MA, MB) = \frac{\pi}{2n} + \frac{2k\pi}{n}$, où k est entier.

b) Pour n −3, résoudre dans C l'équation (E) et construire dans le plan les points images des solutions de (E).

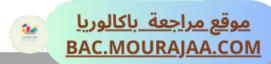
EXERCICE 6: (D.C 2019)

 $\mbox{{\it I}}\slash$ On considère dans l'ensemble des nombres complexes l'équation (E) :

$$\mathsf{Z}^3-(\,1+\!e^{i\theta}\,)\mathsf{Z}^2+(\,1+\!e^{i\theta}\,)\,\mathsf{Z}-\,1=0\;;\,\theta\!\in\!]-\pi$$
 , 0 [

- 1) Montrer que l'équation (E) admet trois solutions <u>distinctes dont deux seulement</u> non réelles. On note Z_1 et Z_2 les solutions non réelles .(On ne cherche pas à calculer Z_1 et Z_2)
- 2) Soit K le milieu des points M_1 et M_2 d'affixes respectives Z_1 et Z_2 . On note Z_k l'affixe de K

Déterminer l'ensemble Γ décrit par le point K lorsque θ varie dans] - π , 0 [



II/ Le plan est muni d'un repère orthonormé direct (O, \vec{u} , \vec{v}) .

On considère les points A et B d'affixes respectives 1 et -1.

- 1) a) Montrer que : $\frac{(Z_2+1)(Z_1-1)}{(Z_2-1)(Z_1+1)} = -1$.
 - b) En déduire que les points A, B, M₁ et M₂ appartiennent à un même cercle.
- 2) a) Montrer que ($Z_2 Z_1$)² = 4 ($Z_K^2 1$).
 - b) En déduire que la bissectrice de l'angle \widehat{AKB} est portée par la droite (M₁ M₂) .
- 3) a)Placer les points A et B et construire l'ensemble $\,\Gamma\,$.
- b) Γ coupe l'axe des $\,$ imaginaires en un point K $\,$.Construire alors les points M_1 et M_2 correspondant .

