LPA	Série 2 : complexe	2020/2021 4 ^{ème} Math
M ^{me} Mahjoubi Besma		4 ···· Wath

Exercice 1:

Répondre par vrai ou faux en justifiant

1) l'équation : $z^4 = \bar{z}$ admet exactement 4 solutions distinctes

2) Les solutions de l'équation $(z+1)^n + (\bar{z}-1)^n = 0$ sont imaginaires

3) Soit n un entier naturel supérieur ou égal à 2, le nombre de racines dans $\mathbb C$ de l'équation $z^n=\bar z^{n-1}$ est égal à 2n-1

4) Si M et M'sont deux points d'affixes inverses alors (o,\vec{u}) porte la bissectrice intérieure de $(\overrightarrow{OM},\overrightarrow{OM'})$

Exercice 2:

Résoudre dans C les équations suivantes

1)
$$z^4 + 6z^2 + 25 = 0$$
 ; 2) $z^5 - \bar{z} = 0$; 3) $z\bar{z} + 3(z - \bar{z}) - 13 + 18i = 0$
4) $z^2 - 4\bar{z} - 5 = 0$; 5) $z^3 = 2 + 11i$ (indiction; développer $(2 + i)^3$)

Exercice 3:

1) Résoudre dans \mathbb{C} $z^{2n}+z^n+1=0$, $n\in\mathbb{N}$

2) Déduire la résolution dans $\mathbb C$ de $(\frac{1+z}{1-z})^n+(\frac{1-z}{1+z})^n+1=0$, $n\in\mathbb N$

Exercice 4:

Soit θ un réel de $]0,\pi[$

1) Résoudre dans \mathbb{C} , $z^2-2iz-1-e^{i\theta}=0$

2) Soit $p(z) = z^3 - 3iz^2 - (3 + e^{i\theta})z + i(1 + e^{i\theta})$

a) Montrer que l'équation p(z) = 0 admet une solution imaginaire pure que l'on précisera

b) Résoudre alors p(z) = 0

3) le plan complexe est rapporté à un repère orthonormé direct (o, \vec{u}, \vec{v})

On considère les points A, $\it M_1$ $\,$ et $\it M_2$ $\,$ d'affixes respectives -1+i , $\,i+e^{i\theta}$ $\,$ et $i-e^{i\theta}$

 $\theta \in]0;\pi[$

a) Montrer que les vecteurs $\overrightarrow{AM_1}et$ $\overrightarrow{AM_2}$ sont orthogonaux

b) Montrer que lorsque θ varie dans $]0,\pi[$ les points M_1 et M_2 varient sur un cercle C que l'on précisera

Exercice 5:

Soit m un nombre complexe différant de 1 et (o, \vec{u}, \vec{v}) un repère o.n.d du plan

- 1) Résoudre dans \mathbb{C} l'équation (E): $z^2 (1-i)(m+1)z i(m^2+1) = 0$
- 2) Déterminer les valeurs de m pour que le produit des deux racines de (E) soit égale à1
- 3) On considère les points M(z), $M_1(z_1)$ et $M_2(z_2)$ avec $z_1 = 1 im$ et $z_2 = m i$
- a) Ecrire z_1 et z_2 sous forme exponentielle, pour $m=e^{i\theta}$ et $\theta\in\left]\frac{\pi}{2},\pi\right[$
- b) Déterminer l'ensemble des points M tel que les points M , M $_1$ et M $_2$ sont alignés
- c) Déterminer l'ensemble des points M tel que le triangle MM_1M_2 soit rectangle $\mathrm{en}M_2$

Exercice 6:

- 1) Résoudre dans \mathbb{C} l'équation $z^2 2e^{i\theta}z + 2e^{2i\theta} = 0$ ou $\theta \in [0, \pi]$
- 2) Soit M et N deux points d'affixes respectives $z_M=(1-i)e^{i\theta}et\ z_N=(1+i)e^{i\theta}$ Montrer que OMN est un triangle rectangle et isocèle
- 3) Déterminer θ pour que (MN) soit parallèle à la droite $\Delta : y = x$

Exercice 7:

- 1) Résoudre dans $\mathbb C$ l'équation (E) : $z^4 + z^3 + z^2 + z + 1 = 0$
- 2) Soit z_1 , z_2 , z_3 et z_4 les solutions de (E) avec $\arg(z_1) \in \left[0, \frac{\pi}{2}\right]$
- a) Ecrire z_4 , z_2 , z_3 en fonction de z_1
- b) Calculer $z_1 + z_2 + z_3 + z_4$ et $\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} + \frac{1}{z_4}$

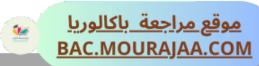
Exercice 8:

- 1) Déterminer sous forme trigonométrique les racines cubiques de $4\sqrt{2}(-1+i)$
- 2) Déduire les valeurs de $\cos\left(\frac{11\pi}{12}\right)$ et $\sin\left(\frac{11\pi}{12}\right)$

Exercice 9: (bac 2005)

Dans le plan complexe rapporté à un repère orthonormé (o, \vec{u}, \vec{v}) , on considère le point A(1)

Soit l'application f de p dans p qui à tout point M(z) associe le point M'(z');



$$z' = \frac{1+i}{\sqrt{2}}z + 1 - \frac{1+i}{\sqrt{2}}$$

- 1) Déterminer la nature de f et préciser ses éléments caractéristiques
- 2) Soit le point M_0 d'affixe 2 .On pose pour tout entier naturel n, $M_{n+1}=f(M_n)$ on désigne par Z_n l'affixe du point M_n et par Z_n l'affixe du vecteur $\overrightarrow{AM_n}$
- a) Montrer que $Z_1=e^{irac{\pi}{4}}$
- b) Montrer que pour tout $n \ de \ \mathbb{N}$, $Z_n = e^{i \frac{n \pi}{4}}$
- c) En déduire l'ensemble des valeurs de n pour les quelles les points A , M_0 $\ et \ M_n$ sont alignés.

Exercice 10:

Soit $x \in [0,\pi]$ on pose pour tout $n \in \mathbb{N}^*$ $S_n(x) = 1 + \cos(x) + \cos(2x) + \cdots + \cos(nx)$ et $T_n(x) = \sin(x) + \sin(2x) + \cdots + \sin(nx)$

- 1)Calculer $S_n(x) + iT_n(x)$
- 2) Calculer $S_n(x)$ pour x=0
- 3)Montrer que si $x \in]0,\pi]$ alors $S_n(x) = \frac{\sin(\frac{n+1}{2}x)\cos(\frac{n}{2}x)}{\sin(\frac{x}{2})}$

