LYCEE PILOTE SFAX

Série d'exercices N°1

M MEGDICH

4 éme MATH

EXERCICE N°1

Dans le plan complexe on donne le point A d'affixe -2i ; soit M un point d'affixe z on lui associe le point M'd'affixe z' tel que $z' = -2\overline{z} + 2i$

- 1) On donne le point B d'affixe 3-2i ; Déterminer les affixes des points A' et B' associés respectivement à A et B
- 2) Montrer que si M appartient à la droite D :y= -2 alors le point M' appartient à D
- 3) Montrer que pour tout M d'affixe z ; |z'+2i|=2|z+2i|. Interpréter géométriquement ce résultat
- 4) Pour tout point M distinct de A on appelle θ un argument de z+2i
- a) Montrer que (z+2i)(z'+2i) est un réel négatif ;en déduire un argument de (z'+2i)
- b) Que peut on dire des demi droites [AM] et [AM])
- 5) En utilisant les résultats précédentes, proposer une construction géométrique du point M' à partir d'un point M

EXERCICE N°2

On désigne par A et B les points d'affixes respectifs 1et i et par © le cercle de centre O et de rayon 1

Soit l'application f qui à tout point M de P d'affixe non nul z associe le point M' d'affixe $z' = \frac{z-i}{z}$

- 1) Montrer que f n'a aucun point invariant
- 2) Déterminer l'ensemble des antécédents par f du point A

3) a- Montrer que pour tout point
$$M$$
 de $P\setminus\{O,B\}$, on $a:\widehat{OM,OM'}\equiv\widehat{(u,BM)}[2\pi]$

- b- En déduire l'ensemble des points M pour lesquels O,M et M' sont alignés
- 4) a-Montrer que pour tout point M de $P \setminus \{O\}$, les vecteurs $\overline{AM'}$ et \overline{OM} son orthogonaux
- b- En déduire une construction du point M' à partir d'un point M donné n'appartenant pas à (OB) ; effectuer la construction en prenant $z_M = 1 + i\left(1 + \sqrt{3}\right)$

5) a- Montrer que si z'=
$$\frac{z-i}{z}$$
 alors $z(1-z'\overline{z'})=i(1-z')$

- b- En déduire que pour tout point de P n'appartenant pas au cercle © admet un antécédent par f
- c- Déterminer l'image par f de la droite $D(B, \vec{u})$ ($m \neq j \in I$)

EXERCICE N°3 (BAC 2011)

On considère le point A d'affixe (-1) et les points M,N et P d'affixes respectives z,z² et z³avec z un nombre complexe non nul différent de (-1)et de 1

- 1)a) Montrer que : (Le triangle MNP est rectangle en P) si et seulement si $(\frac{1+z}{z}$ est imaginaire pur)
- b) On pose z=x+i y avec x et y sont deux réels. Montrer que $\frac{1+z}{z} = \frac{x^2 + y^2 + x iy}{x^2 + y^2}$

c)En déduire que l'ensemble des points M tels que le triangle MNP soit un triangle rectangle en P est le cercle (Γ) de diamètre OA, privé de A et O

2) on a placé un point M d'affixe z sur (Γ) et son projeté orthogonal H sur $(0, \vec{u})$

On se propose de construire les points N et P d'affixe z^2 et z^3 tels que le triangle MNP soit rectangle en P

a)Montrer que
$$(\overrightarrow{OM}, \overrightarrow{ON}) = (\overrightarrow{u}, \overrightarrow{OM})[2\pi]$$
 puis que $(\overrightarrow{ON}, \overrightarrow{OP}) = (\overrightarrow{u}, \overrightarrow{OM})[2\pi]$

b) Montrer que $OH = OM^2$; Donner un procédé de construction des points Net P puis les construire

EXERCICE n°2

Le plan complexe est rapporté à un repère O.N.D. (O, \vec{u}, \vec{v}) à tout point M d'affixe $z \in \mathbb{C}^*$ on

associe le point M' d'affixe z' tel que $z' = \frac{-1}{z}$

1/a- Montrer que OM .OM'=1 et que $\widehat{OM}, \widehat{OM}'$ = $\pi[2\pi]$

b-En déduire que si M est un point du cercle de centre O et de rayon 1 alors O=M*M' 2/a- Montrer que $|z|+1=|z||\Leftrightarrow |z|-1=1$

b- Soit I(1) et J(-1) trouver l'ensemble des points M' lorsque M décrit le cercle ζ de centre I et de rayon 1 privé de O

c- Expliquer comment peut on construire M' à partir d'un point M de ζ

3/On pose $z = re^{i\theta}$ avec $\theta \in]0, \pi[$ et $r \succ 0$ déterminer θ et r tel que $OM' = \frac{1}{3}OM$ et IM=1

EXERCICE n'S

Le plan complexe est rapporté à un repère O.N.D. (O, \vec{u}, \vec{v}) . On considère A(i) et B $(\frac{1+i}{2})$

pour tout z de C on pose z'=(1-i)z-1 1/* Déterminer $E=\{M(z)/|z|=2\sqrt{2}\}$

, b-On suppose que $z = \frac{1}{2\pi}(\cos\theta + i\sin\theta)$ avec $\theta \in [0,\pi]$ déterminer la forme trigonométrique

de zi suivann les valours de 0

2/a-On suppose que M \neq B; Montrer que $\arg(z') \equiv -\frac{\pi}{4} + \widehat{(u,BM)}[2\pi]$

b- Déduire $F = \{M(z)/z \in \mathbb{R}^*\}$ construire F

3/ On suppose que $M \neq A$; montrer que AMM' est un triangle rectangle en M et déterminer

(AM, AM'). Dedune une construction de M'à pontir de M.

EXERCICE n'6

Le plan complexe est rapporté à un repère O.N.D(O, u, v); Soit f l'application du plan qui à tout point M(z) associe le point M'(z') tel que $z' = \frac{z + iz \, \overline{z}}{1 + z \, \overline{z}}$ on désigne par A(i) et A' (-i)

1/ Montrer que f admet deux points invariants

2/ Montrer que M , A et M' sont alignés

. 3/ a- Montrer que $\forall z \in \mathbb{C} - \{0, i\}; \arg(z') = \frac{\pi}{2} + \left(\widehat{MA', MO}\right)[2\pi]$

b-Déduire que si $M \in \text{au cercle de diamétre } [\text{OA'}] \text{alors } M' \in \grave{a} \text{ une droite qu' on précisera}$

c-Donner alors une construction du point M' image d'un point M du cercle de diamètre [OA]