EXERCICES SUR LES NOMBRES COMPLEXES – 4M

EXERCICE 1:

On donne les nombres complexes :

$$Z_1 = \frac{2012 + i2011}{2012 - i2011} \ \ et \ \ Z_2 = \frac{2012 - i2011}{2012 + i2011}$$
 Montrer que $(Z_1 + \ Z_2)$ est réel et $(Z_1 - \ Z_2)$ est imaginaire pur .

Le plan complexe est muni d'un repère orthonormé direct (o, \vec{u}, \vec{v}) . Déterminer et construire:

- 1) L'ensemble **E** des points M(z) tels que $\left| \frac{Z-2+i}{Z-2i} \right| = 1$. 2) L'ensemble **F** des points M(z) tels que $\left| \frac{Z-2+i}{Z-2i} \right| = 1$. 3) L'ensemble **G** des points M(z) tels que $\left| \frac{Z-2+i}{Z-2+i} \right| = 1$. 4) L'ensemble **H** des points M(z) tels que $\left| \frac{Z-2+i}{Z-2+i} \right| = 1$.
- 5) L'ensemble **C** des points M(z) tels que $\arg\left(\frac{Z-2+i}{Z-2i}\right) \equiv \frac{\pi}{2}[2\pi]$

EXERCICE 3:

- 1) On donne le nombre complexe $Z = \sqrt{6} + \sqrt{2} + i(\sqrt{6} \sqrt{2})$ a/ calculer \mathbb{Z}^2 et donner sa forme trigonométrique. b/En déduire la forme trigonométrique de Z.
- 2) On considère le nombre complexe $Z' = 1 + \sqrt{3} + i(\sqrt{3} 1)$ a/ Calculer $(1+i)Z^\prime$ et donner son écriture sous forme trigonométrique . b/En déduire la forme trigonométrique de Z' et les valeurs de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

EXERCICE 4:

Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v})

On considère les points A, M et M' d'affixes respectives : 1, z et z^3 .

- 1/ a- Montrer que les points A, M et M' sont alignés si et seulement si $[z=1 \ ou \ (1+z+z^2) \in \mathbb{R}]$
 - b- Déterminer l'ensemble $(E) = \{ M(z) \in P \mid A, M \text{ et } M' \text{ sont alignés } \}$
- 2/ a- Résoudre dans \mathbb{C} l'équation : $z^4 = 1$.
 - b- Soit N le point d'affixe $z_N = -(z^2 + 2)$

Déterminer les nombres complexes z pour que le quadrilatère AMNM' soit un parallélogramme.

EXERCICE 5:

1) Montrer que pour tous réels α et β on a :

$$e^{i\alpha} + e^{i\beta} = 2\cos\left(\frac{\alpha - \beta}{2}\right)e^{i\left(\frac{\alpha + \beta}{2}\right)}$$
 et $e^{i\alpha} - e^{i\beta} = 2\sin\left(\frac{\alpha - \beta}{2}\right)e^{i\left(\frac{\alpha + \beta}{2}\right)}$

- 2) Le plan complexe est muni d'un repère orthonormé direct (o, \vec{u}, \vec{v}) soient $\theta \epsilon]-\pi,\pi [$, $z_1=\sin\theta+i\cos\theta$, $z_2=1+\cos\theta+i\sin\theta$ et $z_3=\frac{z_1}{z_2}$
 - a) Donner la forme trigonométrique de z_1 , z_2 et z_3 .
 - b) Déterminer les ensembles décrits par $M_1(z_1)$; $M_2(z_2)$ et $M_3(z_3)$ lorsque θ décrit $]-\pi,\pi[$.

EXERCICE 6:

Le plan complexe est muni d'un repère orthonormé direct (o, \vec{u}, \vec{v})

- 1) On considère les nombres complexes $z_1=e^{i\alpha}$ et $z_2=e^{i\beta}$. Montrer que $\frac{(z_1+z_2)^2}{z_1z_2}\in\mathbb{R}^+$.
- Soient A et B deux points distincts de O et d'affixes respectifs a et b. a/Calculer en fonction de a et b l'affixe z du barycentre G des points pondérés (A, |b|) et (B, |a|). b/Montrer que $\frac{z^2}{ab}$ est un réel strictement positif.
 - c/ Exprimer arg(z) en fonction de arg(a) et arg(b). En déduire que \overrightarrow{OG} est un vecteur directeur de la bissectrice de l'angle \widehat{AOB} .

EXERCICE 7: (B2001)

Dans le point complexe P rapporté à un repère orthonormé $(o, \overrightarrow{u}, \overrightarrow{v})$ on considère les points A et B d'affixes respectives a et 1 où a est un nombre complexe donné différent de 1.

Soit f l'application de $P \setminus \{B\}$ dans P qui, à tout point M d'affixe z, associe le point M' d'affixe : $z' = \frac{z-a}{z-1}$

- 1) Montrer que les affixes des points invariants par f sont les solutions de l'équation (E): $z^2 2z + a = 0$
- 2) a) On suppose que $a = 1 + e^{i\theta}$ où $\theta \in \left[\frac{\pi}{2}, \frac{3\pi}{2} \right]$. Résoudre l'équation E.
 - b) Mettre sous forme trigonométrique chacune des solutions de E.
- 3) Dans cette question on suppose que a = -1. Soit M un point de $P \setminus \{B\}$ d'affixe z et M' le point d'affixe z'
 - a) Montrer que $(\overrightarrow{u}, \overrightarrow{BM}) + (\overrightarrow{u}, \overrightarrow{BM'}) \equiv 0$ [2π] En déduire que [BA) est une bissectrice de l'angle $(\overrightarrow{BM}, \overrightarrow{BM'})$.
 - b) Montrer que z' est imaginaire pur si et seulement si |z|=1.
- c) En déduire la construction du point M' image d'un point M du cercle trigonométrique privé du point B. **EXERCICE 8:**
- 1) a) Résoudre dans \mathbb{C} , l'équation d'inconnue z suivante : $z^2 2iz 2 = 0$
 - b) Mettre les solutions sous forme trigonométrique.
- 2) Soit $\theta \in \left]0, \pi\right[$, on considère l'équation d'inconnue z complexe : (E) $z^2 2 \cdot e^{i\theta} \cdot z + e^{2i\theta} 1 = 0$ Résoudre l'équation (E).
- 3) Dans le plan P muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on considère les points A, B et C d'affixes respectives : $z_1 = 2 \cdot e^{i\theta}$; $z_2 = 1 + e^{i\theta}$ et $z_3 = -1 + e^{i\theta}$.
 - a) Ecrire z_2 et z_3 sous forme exponentielle.
 - b) Montrer que le quadrilatère OBAC est un rectangle.
 - c) Déterminer le réel θ de $]0,\pi[$ tel que OBAC soit un carré.

EXERCICE 9:

Soit m un réel non nul.

- 1) Résoudre dans $\mathbb{C}l'$ équation : $z^2 2iz (1 + m^2) = 0$.
- 2) Pour tout nombre complexe z, on pose : $f(z) = z^3 3iz^2 (3+m^2)z + i(1+m^2)$.
 - a) Vérifier que f(i) = 0; en déduire une factorisation de f(z).
 - b) Résoudre dans \mathbb{C} l'équation f(z) = 0.
- 3) Le plan est rapporté à un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

On considère les points A, M' et M' d'affixes respectives i, i+m et i-m.

- a) Vérifier que A est le milieu du segment [M'M"].
- b) Montrer que le triangle OM'M" est isocèle.
- c) Déterminer les valeurs de m pour que le triangle OM'M" soit équilatéral.

EXERCICE 10:

- 1) a) Vérifier que $(\sqrt{3} 3i)^2 = -6 6\sqrt{3}i$.
 - b) Résoudre dans \forall l'équation : $z^2 (\sqrt{3} + i)z + 2 + 2\sqrt{3}i = 0$
- 2) Le plan complexe P est rapporté à un repère orthonormé direct (O,u,v). On considère les points A et B d'affixes respectives 2i et $\sqrt{3}-i$.
 - a) Ecrire sous forme trigonométrique les nombres complexes 2i et $\sqrt{3}-i$.
 - b) Placer, dans le plan P, les points A et B.
 - Soit C le point du plan tel que $\overrightarrow{AC} = \overrightarrow{OB}$. Déterminer l'affixe du point C.
 - d) Montrer que le point C appartient au cercle de centre O et passant par A.
 - e) Montrer que le quadrilatère OACB est un losange.



