M': Belhadj Zied

Exercice n°1:

Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

- 1- Déterminer l'ensemble des points M d'affixe z non nul tel que $\frac{z}{z}$ soit réel.
- 2- On considère les points N et Q d'affixes respectives \overline{z} et $\frac{z^2}{\overline{z}}$.

Vérifier que $\frac{z_Q - z_M}{z_N - z_M} = -\frac{z}{\overline{z}}$ et déterminer l'ensemble des points M d'affixe z tel que M, N et Q soient alignés.

- 3- On pose M d'affixe $z = i(1 e^{i\theta})$. où $\theta \in]0, \pi[$
 - a- Ecrire z sous forme exponentielle.
 - b- Déterminer en fonction de θ , une mesure de l'angle orienté $(\overline{MN}, \overline{MQ})$.
 - c- Déterminer alors θ pour que le triangle MNQ soit équilatéral.

Exercice n°2:

Le plan P est muni d'un r.o.n.d (O, u, v). On considère les points A(1); B(i); C(2-i) et D(3-4i) A tout point M(z) du plan on associe le point M '(z') tel que : $z'=2-i+(z-1)^2$

- 1- Déterminer les nombres complexes z tel que : z' = z.
- 2- Soit M(z) un point du plan distinct de A et on pose $(\vec{u}, \vec{AM}) = \theta[2\pi]$
 - a- Donner une relation entre AM et CM'.
 - b- Exprimer, en fonction de θ une mesure de l'angle (u,CM')
 - c-Déterminer l'ensemble $E = \{M(z) \in P \text{ tel que } : z-1 = \sqrt{2} e^{i\theta} \text{ avec } \theta \in P \}$
 - d- Déterminer l'ensemble F des points M' lorsque M décrit E.
- 3- Soit Δ la droite d'équation : 2y + x 1 = 0.
 - a-Montrer que : $M(z) \in \Delta \iff z-1=y(-2+i)$ avec $y \in IR$
 - b- Déterminer alors l'ensemble Δ' des points M' lorsque M décrit Δ.

Exercice n°3:

Le plan est muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$.

On considère les points A, B, C et D les points d'affixes respectives : $Z_A=1+2i$, $Z_B=1+\sqrt{3}+i$, $Z_C = 1 + \sqrt{3} - i$ et $Z_D = 1 - 2i$

- 1-a- Montrer que $\frac{Z_D Z_B}{Z_A Z_D} = i\sqrt{3}$ etontrer que les points A, B, C et D appartiennent à un même cercle ζ.
 - b-Placer, dans le repère $(0, \vec{u}, \vec{v})$, les points A et D et construire les points B et C.
 - d- Montrer que le quadrilatère ABCD est un trapèze isocèle.
- 2- Soient M_1 et M_2 les points d'affixes respectives $Z_1 = 1 + 2e^{i\theta}$ et $Z_2 = 1 + 2e^{-i\theta}$. θ est un réel de $\left|\frac{\pi}{2}, \pi\right|$
 - a- Montrer que les points M_1 et M_2 appartiennent à ζ .
 - b-Montrer que $AM_1 = 2\sqrt{2-2\sin\theta}$ et $M_1M_2 = 4\sin\theta$.
- c-Déterminer θ A,B,C,D,M₁ et M₂ soient les sommets d'un hexagone régulier inscrit dans le cercle ζ. Exercice n°4:

Le plan complexe est rapporté à un repère orthonormé direct $(0, \overline{u}, \overline{v})$. Soient les points A(1) et B(-1).

A tout point M d'affixe $z \in \mathbb{C}^*$ on associe le point M' d'affixe z' tel que : $z' = -\frac{1}{z}$.

2- Soit M un point du cercle de centre A de rayon 1 distinct du point O.

- a-Montrer que |z'+1| = |z'| et en déduire que M' appartient à une droite fixe que l'on déterminera.
- b- Donner alors une construction du point M' à partir du point M.

3- Soit M un point du plan n'appartenant pas à l'axe des abscisses.

a- Vérifier que :
$$\frac{z'+1}{z'-1} = -\frac{\overline{z}-1}{\overline{z}+1}$$
 et comparer $(\overline{M'A}, \overline{M'B})$ et $(\overline{MA}, \overline{MB})$.

b- En déduire que M' appartient au cercle circonscrit au triangle ABM.

Exercice n°6:

Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v})

On désigne par A le point d'affixe i et par Δ la droite d'équation : $y = \frac{1}{2}$

A tout point M du plan d'affixe $z \ne i$ on associe le point M' d'affixe z' tel que : $z' = \frac{iz}{\overline{z} + i}$.

1-a- Montrer que Δ est l'ensemble des points M du plan d'affixe $z \neq i$ vérifiant z' = i.

b- Déterminer l'ensemble ζ des points M du plan tel que M' soit le milieu du segment [AM].

2-a- Vérifier que pour tout
$$z \in \mathbb{C} \setminus \{i\}$$
 : $z'-i = \left(\frac{1-2\operatorname{Im}(z)}{|z-i|^2}\right)(z-i)$.

b- En déduire que pour tout point M du plan privé de A, les points A, M et M' sont alignés.

3- On pose z = x + iy avec x et y des réels.

On désigne par H le projeté orthogonal sur la droite Δ du point M d'affixe z. Soit Γ l'ensemble des points M du plan vérifiant : MA = MH.

a- Montrer qu'une équation de Γ est : $y = x^2 + \frac{3}{4}$ et tracer Γ .

b-Montrer que pour tout point M du plan privé de A : AM'×AM = 2HM.

c- En déduire que si M varie sur Γ alors M' varie sur un cercle ζ ' que l'on précisera.

d-Donner alors une construction géométrique du point M' si M appartient à Γ .

Exercice n°7

Soient (O, \vec{u}, \vec{v}) un repère orthonormé direct du plan complexe et A le point d'affixe i.

A tout point M d'affixe $z \neq i$, on associe le point M' d'affixe z' tel que : $z' = \frac{z^2}{i-z}$.

1- Déterminer les points M d'affixe z tel que : z' = z

2- On pose z = x + 1y avec x et y des réels.

Montrer que : $Ré(z') = -\frac{x(x^2 + y^2 - 2y)}{x^2 + (y - 1)^2}$ et en déduire l'ensemble E des points M(z) tel que z' est imaginaire.

3- On pose $\dot{z} = e^{i\theta}$ avec $\theta \in \left[-\frac{3\pi}{2}, \frac{\pi}{2} \right]$.

a-Montrer que : $i - z = 2i\sin\left(\frac{\pi}{4} - \frac{\theta}{2}\right)e^{i\left(\frac{\theta}{2} + \frac{\pi}{4}\right)}$

b-En déduire que M'appartient au cercle de centre O et de rayon 1 ssi : $\theta = \frac{\pi}{6}$ ou $\theta = -\frac{7\pi}{6}$

4- Soient G le point tel que $\overrightarrow{GA} + \overrightarrow{GM} + \overrightarrow{GM}' = \overrightarrow{0}$ et M(z) un point du cercle ζ de centre A et de rayon $\frac{1}{2}$

a-Montrer $z_G = \frac{1}{3(z-i)}$ et en déduire que G appartient à un cercle dont on précisera le centre et le rayon.

b- Montrer que $(\vec{u}, \vec{OG}) = -(\vec{u}, \vec{AM})$

c- Construire alors G et M' connaissant un point M du cercle &

موقع مراجعة باك مداحكة المدال المدال