Lycée Pilote de L'Ariana 29 / 03 / 2016

MATHEMATIQUES Contrôle 3

4ème Maths Durée : 2 heures

Exercice 1: (6 points).

On considère la suite (u_n) définie pour tout entier naturel n non nul par : $u_n = 2^n + 3.7^n + 14^n - 1.$

- 1) a) Calculer u₃.
 - b) Montrer que, pour tout entier naturel n non nul, un est pair.
- c) On note E l'ensemble des nombres premiers qui divisent au moins un terme de la suite (u_n) . Les entiers 2, 3, 5 et 7 appartiennent-ils à l'ensemble (E)?
- 2) Soit p un nombre premier strictement supérieur à 7. Soient m et n deux entiers naturels tels que 14 = m.n.
 - a) Quelles sont les valeurs possibles de m?
 - b) Montrer que $14m^{p-2} \equiv n \pmod{p}$.
 - c) En déduire que $14u_{p-2} \equiv 0 \pmod{p}$.
 - d) L'entier p appartient-il à l'ensemble E?
 - e) Déterminer alors E.

Exercice 2; (7 points):

n est un entier supérieur ou égal à 2. On considère les fonctions f et g définies sur

IR+ par:
$$f(x) = e^{-\frac{1}{n}x} - e^{-x}$$
 et $g(x) = f(\frac{1}{n}x)$.

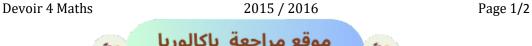
- 1) Montrer que pour tout $x \ge 0$; $f(x) \ge 0$.
- **2)** Etudier les variations de f. f admet-elle un maximum ? Si oui en quel réel est-il atteint ?
- 3) Donner l'équation de la demi-tangente au point d'abscisse 0 à la courbe C de f.
- **4)** a) Etudier le sens de variations de la fonction g. g admet-elle un maximum ? si oui le comparer à celui de f.
- b) Donner l'équation de la demi-tangente au point d'abscisse 0 à la courbe \mbox{Cg} de la fonction g.
- c) Dans un repère orthonormé $(0, \vec{\iota}; \vec{\jmath})$ tracer les allures des courbes représentatives de f et de g pour n = 2. (Unité graphique 2cm).
- **5)** a) Prouver que si $x \in [0; \frac{n \ln(n)}{n-1}]$ alors $g(x) \le f(x)$ puis que si $x \in [\frac{n^2 \ln(n)}{n-1}; +\infty[$ alors $g(x) \ge f(x)$.
- b) Montrer que l'équation f(x)=g(x) admet une unique solution notée u_n , appartenant à $\left[\frac{nln(n)}{n-1};\frac{n^2\ln(n)}{n-1}\right]$.
 - c) Déterminer la limite de la suite $(u_n)_{n\geq 2}$ quand n tend vers $+\infty$.

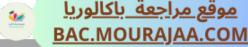
Exercice 3: (7 points).

Dans le plan muni d'un repère orthonormé direct $(O, \vec{\imath}; \vec{\jmath})$, on donne deux points distincts F et A, symétriques par rapport à l'axe $(O, \vec{\imath})$ tel que les points O, A et F ne sont pas alignés.

On désigne par (H) l'hyperbole d'excentricité 2 qui admet F pour foyer et $(0, \vec{i})$ pour directrice associée à F.

- 1) a) Montrer que A est un sommet de (H).
- b) Dans le graphique ci-dessous. Construire l'autre sommet A' puis placer le centre Ω et le second foyer F' de (H).
 - c) Construire les asymptotes puis tracer l'allure de (H).





2) Soit (C) le cercle passant par F et de centre O. Construire (C) sur la figure. On se propose de montrer que (H) \cap (C) = { A, M₁,M₂,M₃ } où M₁,M₂ et M₃ sont les sommets d'un triangle équilatéral.

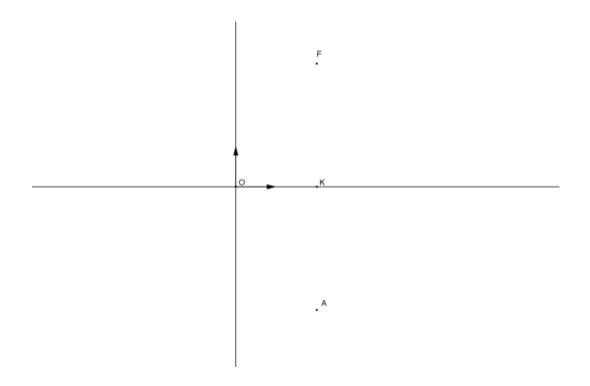
A chaque point M d'affixe z = x + iy; on désigne par a l'affixe de F.

- a) Montrer que M(z) appartient à (C) si et seulement si : $z\bar{z} a\bar{a} = 0$.
- b) Montrer de même que M(z) appartient à (H) si et seulement si :

 $(z-a)(\bar{z}-\bar{a}) + (z-\bar{z})^2 = 0.$

- c) En déduire que M(z) appartient à (C) \cap (H) si et seulement si $\{z\bar{z}-a\bar{a}=0\ (z-\bar{a})(z^3-a^2\bar{a})=0$
- d) On pose $a = re^{i\theta}$, r > 0 et $\theta \in IR$.

Résoudre alors l'équation $(z - \bar{a})(z^3 - a^2\bar{a}) = 0$ puis conclure.



BAC.MOURAJAA.COM