Dérivabilité

Dérivabilité en un point:

On dit qu'une fonction f est dérivable en un point x_0 si la limite : $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ est finie

Cette limite est nommée le nombre dérivé de la fonction f en $x_{\scriptscriptstyle 0}$ et on écrit : $f'(x_{\scriptscriptstyle 0})$

<u>Equation de la tangente à la courbe d'une fonction – la fonction affine tangente à la courbe d'une fonction:</u>

Soit f une fonction dérivable en x_0

- L'équation de la tangente à la courbe de f au point d'abscisse x_0 est : $y = f'(x_0)(x x_0) + f(x_0)$
- La fonction u définie sur \mathbb{R} par : $u(x) = f'(x_0)(x x_0) + f(x_0)$ est la fonction affine tangente à la courbe de la fonction f au point d'abscisse x_0 et c'est une approche de la fonction f au voisinage de x_0

Dérivabilité à droite - à gauche, en un point:

On dit que f est dérivable à droite en x_0 si la limite : $\lim_{x \to x_0^+} \frac{f(x) - f'(x_0)}{x - x_0}$ est finie

Cette limite est nommée le nombre dérivé de la fonction f à droite en x_0 et on écrit : $f_d'(x_0)$

On dit que f est dérivable à gauche en x_0 si la limite : $\lim_{x \to x_0^-} \frac{f(x) - f'(x_0)}{x - x_0}$ est finie

Cette limite est nommée le nombre dérivé de la fonction f à gauche en x_0 et on écrit : $f_g'(x_0)$

On dit qu'une fonction f est dérivable en un point x_0 si elle est dérivable à droite et à gauche en x_0 , et $f_d'(x_0) = f_g'(x_0)$

La dérivabilité et la continuité:

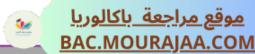
Si une fonction f est dérivable en x_0 , alors f est continue en x_0

Tableaux des dérivées de quelques fonctions usuelles:

f(x)	f'(x)	
k	0	
X	1	
$\frac{1}{x}$	$\frac{-1}{x^2}$	
x ^r	rx^{r-1}	
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	

$$(x \in \mathbb{R})$$

$$\left(\mathbf{r} \in \mathbb{Q}^* - \{1\}\right)$$



Opérations sur les fonctions dérivables:

(u+v)'=u'+v'	(u-v)'	=u'-v'	$(\mathbf{k} \in \mathbb{R}); (\mathbf{k}u)' = ku'$
(uv)' = u'v + uv'			$(u^n)' = nu'u^{n-1}$
$\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$			$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

La dérivée du composé de deux fonctions – la dérivée de la fonction racine carré:

$$(u \circ v)' = v' \times [u' \circ v] \qquad (\sqrt{u})' = \frac{u'}{2\sqrt{u}}$$

La dérivation et les variations d'une fonction:

Soit $\,f\,$ une fonction dérivable sur un intervalle $\,I\,$

 $\forall x \in I \ ; f'(x) \geq 0 \\ \left(f'(x) \succ 0 \right) \quad \Leftrightarrow \quad f \quad \text{est croissante (strictement croissante) sur l'intervalle } I$

 $\forall x \in I : f'(x) = 0$ \Leftrightarrow f est constante sur l'intervalle I

 $\forall x \in I : f'(x) \le 0 (f'(x) < 0) \Leftrightarrow f \text{ est décroissante (strictement décroissante) sur } I' intervalle <math>I$

La dérivation et l'interprétation géométrique:

La limite	Déduction	Interprétation géométrique la courbe $\left(C_{_f} ight)$ admet :
$\lim_{x \to x_0} \frac{f(x) - f'(x_0)}{x - x_0} = a; (a \neq 0)$	f est dérivable en x_{0}	Une tangente au point $A(x_0;f(x_0))$ de coefficient directeur a Une tangente horizontale au point
$\lim_{x \to x_0} \frac{f(x) - f'(x_0)}{x - x_0} = 0$		One tangente norizontale au point $A(x_0; f(x_0))$
$\lim_{x \to x_0^+} \frac{f(x) - f'(x_0)}{x - x_0} = a; (a \neq 0)$	f est dérivable à droite en $_{\it X}{}_{\it 0}$	Une demi-tangente à droite du point $A\left(x_{0};f\left(x_{0}\right)\right)$
$\lim_{x \to x_0^+} \frac{f(x) - f'(x_0)}{x - x_0} = 0$		Une demi-tangente horizontale au point $A\left(x_{0};f\left(x_{0}\right)\right)$
$\lim_{x \to x_0^+} \frac{f(x) - f'(x_0)}{x - x_0} = -\infty$	f n'est pas dérivable à droite en x_{0}	Une demi-tangente verticale à droite au point $A\left(x_{0};f\left(x_{0}\right)\right)$ dirigé vers le bas
$\lim_{x \to x_0^+} \frac{f(x) - f'(x_0)}{x - x_0} = +\infty$		Une demi-tangente verticale à droite au point $A\left(x_{0};f\left(x_{0}\right)\right)$ dirigé vers le haut
$\lim_{x \to x_0^{-}} \frac{f(x) - f'(x_0)}{x - x_0} = a; (a \neq 0)$	f est dérivable à gauche en x_{0}	Une demi-tangente à gauche du point $A\left(x_{0};f\left(x_{0}\right)\right)$
$\lim_{x \to x_0^{-}} \frac{f(x) - f'(x_0)}{x - x_0} = 0$		Une demi-tangente horizontale au $\operatorname{point} A\left(x_{0}; f\left(x_{0}\right)\right)$
$\lim_{x \to x_0^{-}} \frac{f(x) - f'(x_0)}{x - x_0} = -\infty$	f n'est pas dérivable à	Une demi-tangente verticale à gauche au point $A\left(x_{0};f\left(x_{0}\right)\right)$ dirigé vers le haut
$\lim_{x \to x_0^{-}} \frac{f(x) - f'(x_0)}{x - x_0} = +\infty$	gauche en x_{0}	Une demi-tangente verticale à gauche au point $A\left(x_{0};f\left(x_{0}\right)\right)$ dirigé vers le bas

