SUITES REELLES 4eme Mathématiques

Exercice 1

Soit la suite réelle U définie par : $\begin{cases} U_1 = 1 \\ U_{n+1} = \sqrt{3U_n} \end{cases} \qquad \forall n \in \mathbb{N}^*$

- 1) Montrer que pour tout $n \in \mathbb{N}^*$ on $a : 0 \le U_n \le 3$.
- 2) Montrer que la suite U est croissante.
- 3) En déduire que la suite U est convergente et déterminer sa limite.

Exercice 2

Soit la suite (U_n) définie sur $\mathbb N$ par : $U_0=\frac{1}{2}$ et $\forall n\in\mathbb N$ on a : $U_{n+1}=\frac{2U_n}{1+(U_n)^2}$

- 1) a) Montrer que pour tout $n \in \mathbb{N}$ on $a : 0 < U_n < 1$.
 - b) Montrer que la suite (U_n) est monotone.
 - c) En déduire que la suite (U_n) est convergente et calculer sa limite.
- 2) Soit la suite (V_n) définie sur $\mathbb N$ par : $V_n = \frac{1-U_n}{1+U_n} \ \forall n \in \mathbb N$
 - a) Montrer que pour tout $n \in \mathbb{N}$ on $a: V_{n+1} = (V_n)^2$.
 - **b)** Montrer que $\forall n \in \mathbb{N}$; $V_n = \left(\frac{1}{3}\right)^{2^n}$
 - c) On pose pour tout $n \in \mathbb{N}$; $P_n = V_0 \times V_1 \times V_2 \times ... \times V_n$ montrer que $P_n = \left(\frac{1}{3}\right)^{2^{n+1}-1}$
 - d) Calculer $\lim_{n\to+\infty} \left(\frac{P_n}{V_{n+1}}\right)$

Exercice 3

Soit la suite (U_n) définie par $U_0=4$ et $\forall n\in\mathbb{N}$ $U_{n+1}=\frac{{U_n}^2-3U_n+6}{U_n-1}$

- 1) a) Montrer que $\forall n \in \mathbb{N}$ $3 \leq U_n \leq 4$
 - b) Montrer que la suite (U_n) est décroissante.
 - c) Montrer que la suite (U_n) est convergente et déterminer sa limite.
- 2) a) Montrer que $\forall n \in \mathbb{N}$ on a: $0 \le U_{n+1} 3 \le \frac{1}{2}(U_n 3)$
 - b) En déduire que $\forall n \in \mathbb{N}$ on a : $0 \le U_n 3 \le \left(\frac{1}{2}\right)^n$
- 3) On admet que $\forall n \geq 4$ on $a: 2^n \geq n^2$

Soit la suite (V_n) définie sur $\mathbb N$ par : $V_n = n(U_n - 3)$

- a) Montrer que $\forall n \geq 4$ on $a: V_n \leq \frac{1}{n}$
- b) Déterminer alors la limite de la suite *V*.

Exercice 4

Soit U une suite réelle définie sur $\mathbb N$ par : $U_0=2$ et $U_{n+1}=\frac{1}{1+U_n}$ pour tout $n\in\mathbb N$.

1) On considère la suite V définie sur $\mathbb N$ par $V_n=U_{2n}$.

- a) Montrer que $V_{n+1} = \frac{2(1+V_n)}{3+V_n}$.
- b) Montrer par récurrence que $V_n \ge 1$ pour tout $n \in \mathbb{N}$.
- c) Montrer que V est une suite décroissante.
- d) En déduire que V est convergente et calculer sa limite.
- 3) Déterminer $\lim_{n+\infty} U_n$.
- 4) Soit la suite (W_n) définie sur \mathbb{N} par : $W_n = \frac{-1 + U_n}{2 + U_n}$.
 - a) Montrer que (W_n) est une suite géométrique.
 - b) Retrouver $\lim_{n\to\infty} U_n$.

Soit la fonction f définie sur \mathbb{R} par $f(x) = \sqrt{\frac{1}{2}(1+x^2)}$

- 1) a) Montrer que f est dérivable sur \mathbb{R} et déterminer f'(x).
 - b) Montrer que pour tout $x \in [0, 1]$ on $a : f'(x) \le \frac{1}{\sqrt{2}}$
- 2) Soit la suite réelle (U_n) définie sur \mathbb{N} par $U_0=0$ et $U_{n+1}=f(U_n)$.
 - a) Montrer par récurrence que pour tout $n \in \mathbb{N}$ on $a: 0 \leq U_n \leq 1$
 - b) Montrer que pour tout $n \in \mathbb{N}$ on a : $|U_{n+1} 1| \leq \frac{1}{\sqrt{2}} |U_n 1|$
 - c) En déduire que pour tout $n \in \mathbb{N}$ on $a: |U_n 1| \leq \left(\frac{1}{\sqrt{2}}\right)^n$
 - d) Déterminer alors $\lim_{n\to+\infty}U_n$

Exercice 6

Soit la suite (U_n) définie sur \mathbb{N} par : $U_0 = 2$ et $\forall n \in \mathbb{N}$ on a : $U_{n+1} = \frac{3U_n - 1}{2U_n}$

- 1) a) Montrer par récurrence que $\forall n \in \mathbb{N}$ on $a: U_n \geq 1$
 - b) Montrer que la suite (U_n) est décroissante.
 - c) En déduire que la suite (U_n) est convergente et calculer sa limite.
- 2) Soit la suite (V_n) définie sur \mathbb{N} par : $V_n = \frac{2U_n 2}{2U_n 1}$
 - a) Montrer que (V_n) est une suite géométrique de raison $q=\frac{1}{2}$
 - b) Exprimer V_n puis U_n en fonction de n
 - c) Retrouver la limite de la suite (U_n) .
- 3) a) Montrer que $\forall n \in \mathbb{N}$ on $a: U_{n+1} 1 \leq \frac{1}{2}(U_n 1)$
 - b) Montrer par récurrence que $\forall n \in \mathbb{N}$ on $a: U_n 1 \leq \frac{1}{2^n}$
 - c) Retrouver alors la limite de la suite (U_n) .

Exercice ?

Soit la suite réelle (U_n) définie sur $\mathbb N$ par : $U_0 = -3$ et $\forall n \in \mathbb N$ on a : $U_{n+1} = \frac{U_n - 8}{2U_n - 9}$

- 1) a) Montrer que $\forall n \in \mathbb{N}$ on $a: U_n < 1$
 - b) Montrer que la suite (U_n) est croissante.
 - c) En déduire que la suite (\boldsymbol{U}_n) est convergente et calculer sa limite.
- 2) Soit la suite réelle (W_n) définie sur \mathbb{N} par : $W_n = \frac{U_n 1}{U_n 4}$
 - a) Montrer que la suite (W_n) est une suite géométrique te.
 - b) Exprimer W_n puis U_n en fonction de n et retrouver la limite de la suite (U_n) .
- 3) a) Montrer que $\forall n \in \mathbb{N}$ on $a: |U_{n+1} 1| \leq \frac{1}{7}|U_n 1|$
 - b) En déduire que $\forall n \in \mathbb{N}$ on $a: |U_n-1| \leq 4\left(\frac{1}{7}\right)^n$
 - c) Retrouver la limite de la suite (U_n) .

Soit la suite (U_n) définie sur $\mathbb N$ par : $U_{n+1} = \sqrt{\frac{U_n+1}{2}}$

- 1) Dans cette question on suppose que $U_0 = \cos x$ où $x \in \left]0, \frac{\pi}{2}\right[$
 - a) Montrer que $\forall n \in \mathbb{N}$ on $a: U_n = \cos\left(\frac{x}{2^n}\right)$
 - b) En déduire la limite de la suite (U_n) .
- 2) Dans cette question on suppose que $U_0 \in]0$, 1[
 - a) Montrer que $\forall n \in \mathbb{N}$ on $a: 0 < U_n < 1$
 - b) Montrer que la suite (U_n) est monotone.
 - c) En déduire que la suite (U_n) est convergente et calculer sa limite.

Exercice 9

1) Soit f la fonction définie sur \mathbb{R} par : $f(x) = x + \cos x$

Montrer que f est strictement croissante sur \mathbb{R} .

- 2) Soit (U_n) la suite définie sur $\mathbb N$ par : $\begin{cases} U_0 = 0 \\ U_{n+1} = U_n + \cos(U_n) \end{cases}$
 - a) Montrer pour tout entier naturel $n, \ 0 \le U_n \le \frac{\pi}{2}$
 - b) Montrer que la suite (U_n) est convergente et calculer sa limite.
- 3) Pour tout $n \in \mathbb{N}$ on pose $S_n = \sum_{k=0}^n \cos(U_n)$
 - a) Montrer pour tout entier naturel n, $S_n = U_{n+1}$
 - b) Déterminer $\lim_{x\to+\infty} S_n$
- 4) Pour tout $n \in \mathbb{N}$ on pose $V_n = -\frac{1}{2} + \frac{1}{n+1} \sum_{k=0}^n \cos^2\left(\frac{U_n}{2}\right)$
 - a) Montrer, en utilisant la formule d'Euler que $\forall \theta \in \mathbb{R} : \cos^2\left(\frac{\theta}{2}\right) = \frac{1+\cos\theta}{2}$

- b) En déduire $\forall n \in \mathbb{N}$ on a $V_n = \frac{U_{n+1}}{2(n+1)}$
- c) Déterminer $\lim_{x\to +\infty} nV_n$

- 1) Soit la suite réelle (U_n) définie sur $\mathbb N$ par : $\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{4U_n}{1+U_n} \end{cases}$
 - a) Montrer que pour tout $n \in \mathbb{N}$ on $a : 0 < U_n < 3$
 - b) Montrer que la suite (U_n) est croissante.
 - c) En déduire que la suite (U_n) est convergente et calculer sa limite.
- 2) Soit la suite (V_n) définie sur \mathbb{N} par : $V_n = \frac{U_n 3}{U_n}$.
 - a) Montrer que la suite (V_n) est géométrique.
 - b) Exprimer V_n puis U_n en fonction de n.
 - c) Retrouver alors la limite de la suite (U_n) .
- 3) Soit la suite (W_n) définie sur \mathbb{N} par : $W_n = \frac{3}{U_n}$ et on pose $S_n = \sum_{k=1}^{n} W_k$
 - a) Montrer que pour tout $n \in \mathbb{N}$ on a : $W_n = 1 V_n$
 - b) Montrer que pour tout $n \in \mathbb{N}$ on a : $S_n = n + 1 + \frac{8}{3} \left(1 \left(\frac{1}{4} \right)^{n+1} \right)$ puis Calculer $\lim_{n \to +\infty} \frac{S_n}{n}$

Exercice 11

Soit la suite (U_n) définie sur $\mathbb N$ par ; $U_0=2$ et $\forall n\in\mathbb N$; $U_{n+1}=\frac{1+(U_n)^2}{2U_n}$

- 1) Montrer que pour tout $n \in \mathbb{N}$ on $a: U_n \ge 1$
- 2) a) Etudier la monotonie de la suite (U_n) .
 - b) En déduire que la suite (U_n) est convergente et déterminer sa limite.
- 3) a) Montrer que pour tout $n \in \mathbb{N}$ on a : $U_{n+1} 1 \le \frac{1}{2}(U_n 1)$
 - b) En déduire que pour tout $n \in \mathbb{N}$ on a : $U_n 1 \le \left(\frac{1}{2}\right)^n$ et retrouver la limite de la suite (U_n)
- **4)** Soit la suite (S_n) définie sur \mathbb{N}^* par : $S_n = \sum_{k=0}^n U_k$
 - a) Montrer que $\forall n \in \mathbb{N}^*$ on $a: n \leq S_n \leq n+1-\frac{1}{2^n}$
 - **b)** Déterminer alors $\lim_{n\to+\infty} S_n$ et $\lim_{n\to+\infty} \frac{S_n}{n}$

On considère les suites (U_n) et (V_n) définies sur \mathbb{N}^* par :

$$U_n = \left(1 + \frac{1}{1 \times 1!}\right) \times \left(1 + \frac{1}{2 \times 2!}\right) \times \dots \times \left(1 + \frac{1}{n \times n!}\right) \quad \text{et} \quad V_n = \left(1 + \frac{1}{n \times n!}\right) U_n$$

1) Montrer que la suite (U_n) est croissante.

- - b) En déduire que la suite (Vn) est décroissante.
- 3) Montrer que $\forall n \in \mathbb{N}^* : V_n U_n \leq \frac{4}{n}$
- 4) En déduire que les (U_n) et (V_n) converge vers un même réel L et que $\frac{5}{2} \le L \le \frac{25}{8}$

Soit les suites (U_n) et (V_n) définies sur $\mathbb N$ par :

$$U_0 = 0 \; ; \, V_0 = 1 \; \; \forall n \in \mathbb{N} \; \text{on a} : U_{n+1} = \frac{2U_n + V_n}{3} \quad \text{et} \quad V_{n+1} = \frac{3U_n + 2V_n}{5}$$

- 1) Calculer U_1 et V_1
- 2) Montrer, par récurrence, que pour tout $n \in \mathbb{N}$ on $a: U_n \leq V_n$
- 3) Montrer que la suite (U_n) est croissante et que la suite (V_n) est décroissante.
- 4) Montrer que les suites (U_n) et (V_n) sont convergentes et qu'elles admettent la même limite.
- 5) Soit la suite (W_n) définie sur \mathbb{N} par : $W_n = 9\mathbf{U_n} + 5\mathbf{V_n}$
 - a) Montrer que (W_n) est une suite constante.
 - b) En déduire la valeur de la limite commune des suites (U_n) et (V_n) .

Exercice 14

Soit la suite réelle (U_n) définie sur $\mathbb N$ par : $\begin{cases} U_0 = 0 \\ U_{n+1} = \sqrt{3U_n + 4} \end{cases} \forall n \in IN.$

- 1) a) Montrer que pour tout $n \in IN$ on $a : 0 \le U_n \le 4$.
 - b) Montrer que la suite (U_n) est croissante.
 - c) En déduire que la suite (U_n) est convergente et calculer sa limite.
- 2) a) Montrer que pour tout $n \in \mathbb{N}$ on $a: 4-U_{n+1} \leq \frac{3}{4}(4-U_n)$.

(On pourra commencer par exprimer $\mathbf{4} - U_{n+1}$ en fonction de $\mathbf{4} - U_n$)

- b) En déduire que $\forall n \in \mathbb{N}$ on $a: 4 U_n \leq 4 \times \left(\frac{3}{4}\right)^n$
- c) Retrouver alors la limite de la suite (U_n) .
- 3) Soit la suite (S_n) définie sur \mathbb{N}^* par : $S_n = \sum_{k=0}^n U_k$
 - a) Montrer que la suite (S_n) est croissante.
 - b) Montrer par l'absurde que la suite (S_n) n'est pas majorée.
 - c) Déterminer alors la limite de la suite (S_n) .
- 4) a) Montrer que pour tout $n \in \mathbb{N}^*$ on $a: S_n \geq 4n 12\left(1 \left(\frac{3}{4}\right)^n\right)$.

(On pourra utiliser le résultat de la question 2) b)

b) Retrouver alors la limite de la suite (S_n) .

Soit la suite (U_n) définie sur \mathbb{N}^* par : $U_1=1$, $U_2=3$ et $\forall n\in\mathbb{N}^*$ on a : $U_{n+2}=6U_{n+1}-8U_n$

Soit la suite (W_n) définie sur \mathbb{N}^* par : $W_n = \frac{U_{n+1}}{U_n}$

- 1) a) Vérifier que $\forall n \in \mathbb{N}^*$ on $a: W_{n+1} = 6 \frac{8}{W_n}$
 - b) Montrer que $\forall n \in \mathbb{N}^*$ on a $2 < W_n < 4$
 - c) Montrer que la suite w est croissante
 - d) Montrer que la suite w est convergente et déterminer sa limite.
- 2) Soit la suite réelle t définie sur \mathbb{N}^* par $t_n = \frac{W_n 4}{W_n 2}$
 - a) Montrer que t est une suite géométrique de raison $\frac{1}{2}$
 - b) Montrer que $\forall n \in \mathbb{N}^*$ on a $W_n = \frac{2(1+2^n)}{1+2^{n-1}}$
 - c) En déduire que $U_n = 2^{n-2}(1 + 2^{n-1})$
 - d) Déterminer la limite de la suite U.

Exercice 16

On considère les suites (U_n) et (V_n) définies sur $\mathbb N$ par :

$$\begin{cases} U_0 = 0 \\ U_{n+1} = \alpha U_n + (1-\alpha)V_n \end{cases} \quad n \in \mathbb{N} \quad \text{ et } \begin{cases} V_0 = 2 \\ V_{n+1} = (1-\alpha)U_n + \alpha V_n \end{cases} \quad n \in \mathbb{N} \quad \text{ avec} \quad \frac{1}{2} < \alpha < 1$$

- 1) Soit la suite (t_n) définie sur \mathbb{N} par $t_n = V_n U_n$
 - a) Calculer t_0 et t_1
 - b) Montrer que $\forall n \in \mathbb{N}$ on $a: t_n = 2(2\alpha 1)^n$
 - c) En déduire la limite de la suite (t_n)
- 2) a) Montrer que $\forall n \in \mathbb{N}$ on a : $U_n \leq V_n$
 - b) Montrer que la suite (U_n) est croissante et que la suite (V_n) est décroissante.
 - c) En déduire que les suites (U_n) et (V_n) convergent vers une même limite β .
 - d) Montrer que $\forall n \in \mathbb{N}$ on $a: U_n + V_n = 3$
 - e) En déduire la valeur de $oldsymbol{eta}$

Exercice 17

Soient a et b deux réels tels que 0 < a < b . On définie sur $\mathbb N$ deux suites réelles U et V

$$\text{par}: \begin{cases} U_0 = a & V_0 = b \\ \forall n \in \mathbb{N} & U_{n+1} = \frac{2U_nV_n}{U_n + V_n} & et & V_{n+1} = \frac{U_n + V_n}{2} \end{cases}$$

- 1) Montrer que $\forall n \in \mathbb{N}$ on $a: 0 < U_n < V_n$
- 2) Montrer que la suite U est croissante et que la suite V est décroissante.
- 3) Montrer que les suites U et V sont convergentes
- 4) a) Montrer que $\forall n \in \mathbb{N}$ on $a: V_{n+1} U_{n+1} < \frac{1}{2}(V_n U_n)$

- b) En déduire $\forall n \in \mathbb{N}^*$ on $a: S'_n = \frac{2}{U_{n+1}} \frac{5}{2^{n+1}}$
- c) Calculer alors la limite de la suite (S'_n) .

Soit la suite (U_n) définie sur \mathbb{N} par : $U_0 = 0$ et $\forall n \in \mathbb{N}$ on a : $U_{n+1} = \frac{2U_n + 3}{U_n + 4}$

- 1) a) Montrer par récurrence que $\forall n \in \mathbb{N}$ on $a:0 \leq U_n \leq 1$
 - b) Montrer que la suite (U_n) est croissante.
 - c) En déduire que la suite $({\cal U}_n)$ est convergente et calculer sa limite.
- 2) Soit la suite (V_n) définie sur \mathbb{N} par : $V_n = \frac{U_n 1}{U_n + 3}$
 - a) Montrer que (V_n) est une suite géométrique dont on précisera la raison et le premier terme.
 - **b**) En déduire $\lim_{n\to+\infty} V_n$ et $\lim_{n\to+\infty} \sum_{k=0}^{\infty} V_k$
 - c) Exprimer U_n en fonction de n et retrouver la limite de (U_n) .

Exercice 25

- 1) a) Montrer que pour tout $k \in \mathbb{N}^*$ on $a: 1 \frac{1}{k^2} = \left(\frac{k-1}{k}\right) \left(\frac{k+1}{k}\right)$
 - b) Soit $U_n=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{n^2}\right)$; $n\in\mathbb{N}^*\backslash\{1\}$ calculer $\lim_{n\to+\infty}U_n$
- 2) Soit $V_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}; n \in \mathbb{N}^*$
 - a) Montrer que la suite (V_n) est croissante.
 - b) Montrer que pour tout $n \in \mathbb{N}^*$ on $a: V_{2n} V_n \ge \frac{1}{\sqrt{2}}$
 - c) En déduire que la suite (V_n) diverge vers $+\infty$.

- b) En déduire que $\forall n \in \mathbb{N}$ on $a : V_n U_n < \left(\frac{1}{2}\right)^n (b-a)$
- c) En déduire que les suites U et V sont adjacentes et qu'elles ont la même limite L.
- 5) a) Montrer que $\forall n \in \mathbb{N}$ on $a: U_n V_n = ab$.
 - b) En déduire la valeur de L.

- 1) Soit f la fonction définie sur $[0, +\infty[$ par $: f(x) = \frac{1}{x^2 + x + 1}$
 - a) Dresser le tableau de variation de f.
 - b) Montrer que pour tout $x \in [0, +\infty[$, on $a: 1-x \le f(x) \le 1$
- 2) Soit la suite (U_n) définie sur \mathbb{N}^* par : $U_n = \frac{1}{n} \sum_{n=1}^{\infty} \left(\frac{1}{n+k}\right)$
 - a) Montrer que pour tout $\in \mathbb{N}^*$, on a : $\frac{1}{2n} \le U_n \le \frac{1}{n}$
 - b) Déterminer alors la limite de la suite (U_n) .
- 3) Soit la suite (W_n) définie sur \mathbb{N}^* par : $W_n = \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{1}{n+k}\right)$
 - a) Justifier que tout $n \in \mathbb{N}^*$ et $1 \le k \le n$, on $a: 1 \frac{1}{n+k} \le f\left(\frac{1}{n+k}\right) \le 1$
 - b) En déduire que $1 U_n \le W_n \le 1$
 - c) Déterminer alors la limite de la suite (W_n) .

Exercice 19

Soit la suite réelle U définie sur \mathbb{N} par : $\begin{cases} U_0 = 1 \\ U_{n+1} = U_n + \frac{2}{U_n} \end{cases}$

- 1) Montrer que pour tout entier naturel n on $a: U_n \ge 1$.
- 2) Montrer que la suite U est croissante.
- 3) Montrer que la suite U diverge vers $+\infty$.
- 4) a) Montrer que pour tout entier naturel n on a : $4 \le U_{n+1}^2 U_n^2 \le 4 + 2(U_{n+1} U_n)$
 - b) En déduire que pour tout entier naturel n on a: $4n \le U_n^2 1 \le 4n + 2U_n 2$
 - c) Montrer alors que pour tout entier naturel n on a : $1 \frac{2}{U_n} + \frac{1}{U_n^2} \le \frac{4n}{U_n^2} \le 1 \frac{1}{U_n^2}$
 - d) En déduire $\lim_{n\to +\infty} \left(\frac{2\sqrt{n}}{U_n}\right)$

Exercice 20

Soit la suite réelle (U_n) définie sur $\mathbb N$ par $U_0=1:U_{n+1}=\frac{U_n}{2+U_n} \ \forall n\in \mathbb N$

- 2) a) Montrer que $\forall n \in \mathbb{N}$ on $a: U_n > 0$.
 - **b)** Montrer que la suite (U_n) est décroissante.
 - c) En déduire que la suite (U_n) est convergente et déterminer sa limite.

b) En déduire que la suite (S_n) converge vers une limite que l'on déterminera.

Exercice 23

- A) Soit la suite réelle U définie sur $\mathbb N$ par : $\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \frac{2U_n}{1 + (U_n)^2} & \forall n \in \mathbb N \end{cases}.$
- 1) a) Montrer que $\forall n \in \mathbb{N}$ on $a: 0 < U_n < 1$
 - b) Montrer que la suite U est monotone.
 - c) En déduire que la suite U est convergente et calculer sa limite.
- 2) Soient les suites V et S définies sur \mathbb{N} par : $V_n = 1 U_n$ et $S_n = \sum_{k=0}^n V_k$
 - a) Montrer que $\forall n \in \mathbb{N}$ on $a: 0 \leq V_{n+1} \leq \frac{2}{5}V_n$
 - b) En déduire que $\forall n \in \mathbb{N}$ on $a: 0 \leq V_n \leq \frac{1}{2} \left(\frac{2}{5}\right)^n$
 - c) En déduire que $\forall n \in \mathbb{N}$ on $a: 0 \leq S_n \leq \frac{5}{6} \left[1 \left(\frac{2}{5}\right)^{n+1} \right]$
 - d) Déterminer alors $\lim_{n\to+\infty}\frac{s_n}{n}$
- 3) Soit la suite W définie sur \mathbb{N} par : $W_n = \frac{1 U_n}{1 + U_n}$
 - a) Montrer que $\forall n \in \mathbb{N}$ on $a: W_{n+1} = (W_n)^2$
 - b) Montrer que $\forall n \in \mathbb{N}$ on $a: W_n = \left(\frac{1}{3}\right)^{2^n}$
- 4) a) Calculer en fonvtion de *n* la somme $A_n = \sum_{k=0}^n 2^k$
 - **b)** On pose $\forall n \in \mathbb{N}$; $P_n = W_0 \times W_1 \times ... \times W_n$

Exprimer P_n en fonction de n.

- c) Calculer $\lim_{n\to+\infty} \left(\frac{P_n}{W_{n+1}}\right)$
- B) Soit (S'_n) la suite définie sur \mathbb{N}^* par : $S'_n = \frac{1}{2^n} \sum_{k=1}^n 2^k U_k$
- 1) a) Montrer que $\forall n \in \mathbb{N}^*$ on a : $S'_{n+1} S'_n = \frac{1}{2^{n+1}} \left(2^{n+1} U_{n+1} \sum_{k=1}^n 2^k U_k \right)$
 - b) Montrer que $\forall n \in \mathbb{N}^*$ on a : $\sum_{k=1}^n 2^k U_k < 2^{n+1} U_{n+1}$
- 2) a) Montrer que la suite (S'_n) est croissante.
 - b) En utilisant la question 1) b), montrer que $\forall n \in \mathbb{N}^*, \ S'_n < 2$
 - **e)** En déduire que la suite (S'_n) est convergente.
- 3) a) Vérifier que $\forall n \in \mathbb{N}^*$ on a : $\frac{2^{n+1}}{U_{n+1}} \frac{2^n}{U_n} = 2^n U_n$

- 3) Soit la suite (V_n) définie sur \mathbb{N} par : $V_n = \frac{U_n}{1+U_n}$
 - a) Montrer que la suite (V_n) est géométrique.
 - b) Montrer que : $\forall n \in \mathbb{N}$ on a : $U_n = \frac{1}{2^{n+1}-1}$. Retrouver la limite la suite (U_n)

Soit la suite réelle (U_n) définie sur $\mathbb N$ par : $\begin{cases} U_0 = 0 \\ U_{n+1} = \frac{4U_n}{1+U_n} \end{cases} \quad n \in \mathbb N$

- 1) a) Calculer U_1 et U_2
 - b) Montrer, par récurrence, que pour tout n de $\mathbb N$ on a : $0 < \mathcal U_n < 3$
 - c) Calculer la limite de la suite (U_n) .
- 2) Soit la suite (V_n) définie sur \mathbb{N} par : $V_n = \frac{U_n 3}{U_n}$
 - a) Montrer que (V_n) est une suite géométrique dont on donnera la raison et le premier terme.
 - b) Exprimer V_n puis U_n en fonction de n.
 - c) Retrouver la limite de (U_n) .
- 3) On considère la suite (W_n) définie sur \mathbb{N} par : $W_n = \frac{3}{U_n}$ et pose $S_n = \sum_{k=0}^n W_k$
 - a) Montrer que pour tout $n \in \mathbb{N} : W_n = 1 V_n$
 - b) Montrer que pour tout $n \in \mathbb{N}$: $S_n = n + 1 + \frac{8}{3} \left[\left(1 \left(\frac{1}{4} \right)^{n+1} \right) \right]$
 - c) Calculer $\lim_{n\to+\infty} \frac{s_n}{n}$

Exercice 22

Soit (U_n) la suite définie sur $\mathbb N$ par $U_0=\frac{3}{2}$ et $U_{n+1}=\frac{U_n}{\sqrt{1+U_n}}$: $n\in\mathbb N$.

- 1) a) Montrer que pour tout $\in \mathbb{N}$, $U_n > 0$.
 - b) Montrer que la suite (U_n) est décroissante.
 - c) En déduire que la suite (U_n) est convergente et déterminer sa limite.
- 2) Soit (V_n) la suite définie sur \mathbb{N} par $V_0=1$ et $V_{n+1}=\frac{V_n}{U_n}$; $\in \mathbb{N}$.
 - a) Montrer que pour tout $n \geq 1$; $V_{n+1} \geq \frac{\sqrt{10}}{3} V_n$.
 - b) En déduire par récurrence que pour tout $n \ge 1$; $V_n \ge \frac{2}{3} \left(\frac{\sqrt{10}}{3}\right)^{n-1}$
 - c) puis déterminer $\lim_{n\to+\infty} V_n$
- 3) Soit la suite (S_n) définie sur \mathbb{N}^* par : $S_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{V_k^2}$; $n \ge 1$
 - a) Montrer que $\forall n \geq 1$ on a : $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \leq \frac{45}{2} \left(1 \left(\frac{9}{10} \right)^{n} \right)$