Enoncé logarithme népérien 4ème Sc Technique

Dans tous les exercices le plan est rapporté à un repère orthonormé $(0, \vec{\iota}, \vec{j})$.

Exercice 1

Soit f la fonction définie sur $[0, +\infty[$ par : $\begin{cases} f(x) = x \ln x - x & si \ x > 0 \\ f(0) = 0 \end{cases}$ et soit C sa courbe représentative.

- 1) a) Montrer que f est continue à droite en 0
 - b) Etudier la dérivabilité de f à droite en 0 et interpréter le résultat graphiquement.
- 2) a) Dresser le tableau de variation de f
 - b) Etudier la branche infinie de C.
 - c) Construire la courbe C.
- 3) Soit g la restriction de f à l'intervalle $[1, +\infty[$
 - a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J que l'on précisera.
 - b) Etudier la dérivabilité de g^{-1} à droite en -1
- 4) Tracer C' la courbe de g^{-1} dans le même repère.
- 5) Soit la fonction h définie sur $]0, +\infty[$ par : $h(x) = x^2 \ln x$.
 - a) Calculer h'(x) pour tout $x \in [0, +\infty[$
 - b) Montrer l'existence et l'unicité de la primitive F de f sur $[0, +\infty[$ qui s'annule en 1
 - c) Expliciter F(x) pour tout $x \in]0, +\infty[$

Exercice 2

Soit g la fonction définie sur]0, $+\infty$ [par $g(x) = 1 + x^2 - 2x^2 \ln x$.

- 1) Calculer $\lim_{x\to 0^+} g(x)$ et montrer que $\lim_{x\to +\infty} g(x) = -\infty$.
- 2) a) Montrer que pour tout $x \in [0, +\infty[; g'(x) = -4x \ln x]$.
 - b) Dresser le tableau de variation de g.
- 3) a) Montrer que l'équation g(x) = 0 admet dans $[0, +\infty[$ une unique solution α .
 - b) Vérifier que 1,8 $< \alpha < 1,9$.
 - c) Déduire le signe de g(x) sur]0, $+\infty[$.
- 4) On considère la fonction f définie sur]0, $+\infty[$ par $f(x) = \frac{\ln x}{1+x^2}$
 - a) Calculer $\lim_{x\to 0^+} f(x)$ et montrer que $\lim_{x\to +\infty} f(x) = 0$.
 - b) Montrer que f est dérivable sur]0, $+\infty[$ et $\forall x \in]0$, $+\infty[$; $f'(x) = \frac{g(x)}{x(1+x^2)^2}$
 - c) Vérifier que $f(\alpha) = \frac{1}{2\alpha^2}$
- 5) a) Etudier les variations de f.
 - b) Tracer la courbe C_f de f.

Exercice 3

Soit la fonction f définie sur $[0,+\infty[$ par : $\begin{cases} f(x)=x^2ln^2x & si\ x>0 \\ f(0)=0 \end{cases}$ et soit C_f sa courbe représentative.

- 1) a) Montrer que f est continue à droite en 0.
 - b) Etudier la dérivabilité de f à droite en 0.
 - c) Dresser le tableau de variation de f.
- 2) Tracer C_f (unité graphique 4 cm).

Exercice 5

- 1) Soit g la fonction définie sur]0, $+\infty[$ par $g(x) = -1 + \ln x$.
 - a) Dresser le tableau de variation de g
 - b) Calculer g(e) et déterminer le signe de g(x) pour tout $x \in]0$, $+\infty[$.
 - c) Déterminer la primitive G de g sur]0, $+\infty[$ qui s'annule en 1.
- 2) Soit f la fonction définie sur $[0,+\infty[$ par : $\begin{cases} f(x)=-\frac{3}{4}x^2+\frac{1}{2}x^2\ln x & si \ x>0. \\ f(0)=0 \end{cases}$ et soit C_f sa courbe représentative.
 - a) Montrer que f est continue à droite en 0
 - b) Etudier la dérivabilité de f à droite en 0 et interpréter le résultat graphiquement.
- 3) a) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$ et interpréter les résultats graphiquement.
 - b) Montrer que pour tout $x \in]0$, $+\infty[; f'(x) = xg(x)$.
 - c) Dresser le tableau de variation de f
- 4) a) Déterminer une équation cartésienne de la tangente T à C_f au point A(1, f(1)).
 - b) Montrer que A est un point d'inflexion de C_f .
- 5) a) Déterminer l'intersection de la courbe C_f avec l'axe des abscisses.
 - b) Tracer T et C_f .
- 6) Soit F la fonction définie sur]0, $+\infty$ [par $F(x) = \frac{1}{6}x^3 \ln x \frac{11}{36}x^3$.

Montrer que F est une primitive de f sur]0, $+\infty[$.

Cliquer ci-dessous pour la version PDF de la série logarithme népérien 4ème Sc Technique

Fonctions logarithmes népérien 4ème Sc Techniques

Correction énoncé logarithme népérien 4ème Sc Techniques

Exercice 1

1)
$$\begin{cases} f(x) = x \ln x - x & \text{si } x > 0 \\ f(0) = 0 \end{cases}$$

a)
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \underbrace{x \ln x}_{0} - x = 0 = f(0)$$

donc f est continue à droite en 0

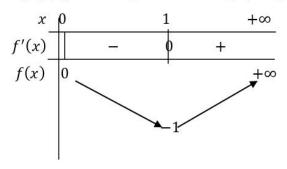
b)
$$\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0^+} \frac{x \ln x - x}{x} = \lim_{x\to 0^+} \widehat{lnx} - 1 = -\infty$$

donc f n'est pas dérivable à droite en 0 et C_f admet à droite en 0 une demi tangente verticale dirigée vers le bas.

2) a) $x \mapsto \ln x$ est dérivable sur]0, $+\infty$ [donc f est dérivable sur]0, $+\infty$ [.

$$\forall x \in]0, +\infty[; f'(x) = (x \ln x - x + 1)' = \ln x + x \times \frac{1}{x} - 1 = \ln x + 1 - 1 = \ln x$$

donc f'(x) prend le signe de lnx sur]0 , $+\infty[$



$$\lim_{x\to+\infty} f(x) = \lim_{x\to+\infty} x \ln x - x = \lim_{x\to+\infty} x (\ln x - 1) = +\infty$$

b)
$$\lim_{x\to +\infty} \frac{f(x)}{x} = \lim_{x\to +\infty} \frac{x \ln x - x}{x} = \lim_{x\to +\infty} \ln x - 1 = +\infty$$

donc C_f admet une branche parabolique de direction (O, \vec{j}) au voisinage de $+\infty$

- c) Voir traçage C_f en fin de la correction.
- 3) a) On a: g(x) = f(x) si $x \in [1, +\infty[$

On a g est continue et strictement croissante sur $[1, +\infty[$ donc g réalise une bijection de $[1, +\infty[$ sur] = $g([1,+\infty[)=[-1,+\infty[$ ainsi g admet une fonction réciproque g^{-1} définie sur $J=[-1,+\infty[$.

- b) La courbe de g admet à droite en 1 une demi tangente horizontale pour raison de symétrie avec la droite Δ : y = x la courbe de g^{-1} aura à droite en g(1) = -1 une demi tangente verticale d'où g^{-1} n'est pas dérivable à droite en - 1
- 4) $C' = S_{\Delta}(C_f)$ avec $\Delta : y = x$ voir le trage de C' en fin de la correction.
- 5) a) $\forall x \in]0, +\infty[; h'(x) = (x^2 \ln x)' = 2x \ln x + x^2 \times \frac{1}{x} = 2x \ln x + x$
- b) On a : f est continue sur]0, $+\infty[$ donc f admet une unique primitive F sur]0, $+\infty[$ qui s'annule en 1
 - c) On a: $\forall x \in]0, +\infty[; h'(x) = 2x \ln x + x]$

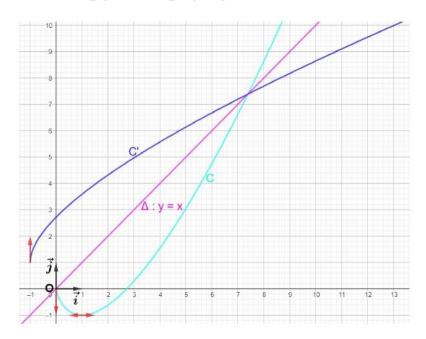
$$= 2xlnx - 2x + 3x$$
$$= 2(xlnx - x) + 3x$$
$$= 2f(x) + 3x$$

ainsi
$$h'(x) = 2f(x) + 3x \Leftrightarrow 2f(x) = h'(x) - 3x \Leftrightarrow f(x) = \frac{1}{2}(h'(x) - 3x)$$

$$F(x) = \frac{1}{2} \left(h(x) - \frac{3}{2} x^2 \right) + c \; \; ; \; \; c \in \mathbb{R} \; \; \mathrm{d'où} \, F(x) = \frac{1}{2} \left(x^2 \ln x - \frac{3}{2} x^2 \right) + c \; \; ; \; \; c \in \mathbb{R}$$

or
$$F(1) = 0$$
 donc $\frac{1}{2}(-\frac{3}{2}) + c = 0$; $-\frac{3}{4} + c = 0$ d'où $c = \frac{3}{4}$

ainsi
$$\forall x \in]0$$
, $+\infty[; F(x) = \frac{1}{2}(x^2 \ln x - \frac{3}{2}x^2) + \frac{3}{4}$



Exercice 2

$$g(x) = 1 + x^2 - 2x^2 \ln x$$
; $x \in]0, +\infty[$

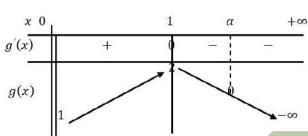
1)
$$\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} 1 + \underbrace{x^2}_{0} - 2\underbrace{x^2 \ln x}_{0} = 1$$

$$\lim_{x\to+\infty}g(x)=\lim_{x\to+\infty}1+x^2-2x^2\ln x=\lim_{x\to+\infty}1+\widetilde{x^2}\left(\overbrace{1-2\ln x}^{-\infty}\right)=-\infty$$

2) a) Pour tout $x \in]0$, $+\infty[$ on a:

$$g'(x) = 2x - 2\left(2x \ln x + x^2 \times \frac{1}{x}\right) = 2x - 2(2x \ln x + x)$$
$$= 2x - 4x \ln x - 2x$$
$$= -4x \ln x$$

b) Pour tout $x \in]0$, $+\infty[$ on $a : g'(x) = -4x \ln x$ donc g'(x) prend le signe de $-\ln x$ sur]0, $+\infty[$ g'(x) = 0; x = 1



3) a)

- ** On a g est continuje et strictement croissante sur]0,1] donc gréalise une bijection de]0,1] sur g(]0,1]) =]1,2] or $0 \notin]1,2]$ donc l'équation g(x) = 0 n'admet pas de solutions dans]0,1]
- ** On a g est continuje et strictement décroissante sur $[1, +\infty[$ donc g réalise une bijection de $[1, +\infty[$ sur $g([1, +\infty[) = [2, -\infty[$ or $0 \in [2, -\infty[$

donc l'équation g(x)=0 admet dans $[1,+\infty[$ une unique solution α

- ** Conclusion l'équation g(x) = 0 admet dans $]0, +\infty[$ une unique solution α .
- b) On a $g(1,8) \simeq \text{ et } g(1,8) \simeq \text{ ; } g(1,8) \times g(1,9) < 0$ donc $1,8 < \alpha < 1,9$.

c)
$$x = 0$$
 $\alpha + \infty$ $g(x) + 0 -$

- 4) $f(x) = \frac{\ln x}{1+x^2}$; $x \in]0, +\infty[$
 - a) $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\ln x}{1 + x^2} = -\infty$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\ln x}{1 + x^2} = \lim_{x \to +\infty} \frac{\ln x}{\frac{1 + x^2}{2}} = 0$
 - b) $x \mapsto \ln x$ est dérivable sur $]0, +\infty[$

 $x\mapsto \frac{1}{1+x^2}$ est dérivable sur]0, $+\infty[$

donc $x\mapsto \frac{\ln x}{1+x^2}$ est dérivable sur]0 , $+\infty[$ ainsi f est dérivable sur]0 , $+\infty[$

pour tout $x \in]0$, $+\infty[$;

$$f'(x) = \frac{\frac{1}{x}(1+x^2)-2x\ln x}{(1+x^2)^2} = \frac{\frac{1+x^2-2x^2\ln x}{x}}{(1+x^2)^2} = \frac{1+x^2-2x^2\ln x}{x(1+x^2)^2} = \frac{g(x)}{x(1+x^2)^2}$$

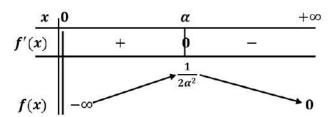
c) On a $f(\alpha) = \frac{\ln \alpha}{1+\alpha^2}$

or $g(\alpha) = 0$ donc $1 + \alpha^2 - 2\alpha^2 \ln \alpha = 0$ donc $2\alpha^2 \ln \alpha = 1 + \alpha^2$ donc $\ln \alpha = \frac{1 + \alpha^2}{2\alpha^2}$

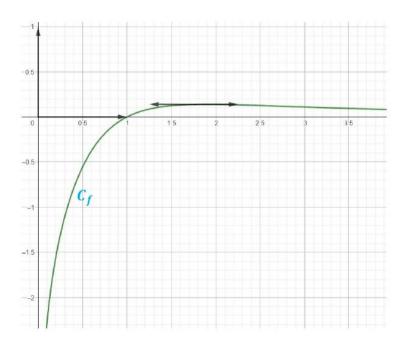
donc
$$f(\alpha) = \frac{\frac{1+\alpha^2}{2\alpha^2}}{1+\alpha^2} = \frac{1+\alpha^2}{2\alpha^2(1+\alpha^2)} = \frac{1}{2\alpha^2}$$

5) a) pour tout $x \in]0$, $+\infty[$ on a $f'(x) = \frac{g(x)}{x(1+x^2)^2}$ donc f'(x) prend le signe de g(x) sur

$$]0,+\infty[; f'(x)=0; g(x)=0; x=\alpha]$$



b)



Exercice 3

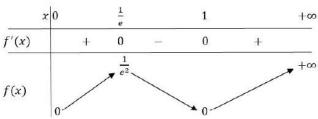
1) a) $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} x^2 \ln^2 x = \lim_{x\to 0^+} (x \ln x)^2 = 0 = f(0)$ donc f est continue à droite en 0.

b) $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0^+} \frac{x^2 l n^2 x}{x} = \lim_{x\to 0^+} x l n^2 x = 0$ donc f est dérivable à droit en 0.

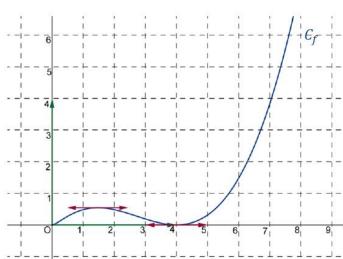
c) $\forall x \in]0, +\infty[; f'(x) = (x^2 \ln^2 x)' = 2x \ln^2 x + x^2 \times 2\left(\frac{1}{x}\right) \ln x = 2x \ln^2 x + 2x \ln x$ = $2x \ln x (\ln x + 1)$

Etudions le signe de lnx + 1 sur $]0, +\infty[$ $lnx + 1 \ge 0 \Rightarrow lnx \ge -1 \Rightarrow lnx \ge ln\frac{1}{e} \Rightarrow x \ge \frac{1}{e}$ $lnx \le 0$ si $x \in]0,1]$ et $lnx \ge 0$ si $x \in [1, +\infty[$

d'où le tableau de variation de f.

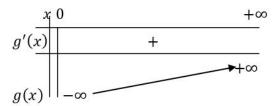


2)



Exercice 5

- 1) Soit g la fonction définie sur]0, $+\infty[$ par $g(x) = -1 + \ln x$.
 - a) $\forall x \in]0, +\infty[; g'(x) = (-1 + \ln x)' = \frac{1}{x} > 0$



$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} -1 + \ln x = -\infty \quad ; \quad \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} -1 + \ln x = +\infty$$

b)
$$g(e) = -1 + \ln e - 1 + 1 = 0$$

 $0 < x \le e$ et g est croissante donc $g(x) \le g(e)$ ainsi $g(x) \le 0$

 $x \ge e$ et g est croissante donc $g(x) \ge g(e)$ ainsi $g(x) \ge 0$

c) La fonction g est continue sur]0, $+\infty[$ donc g admet des primitives sur]0, $+\infty[$, soit G une primitive de g sur]0, $+\infty[$ donc $G(x) = -x + x \ln x - x + c ; c \in \mathbb{R}$

donc
$$G(x) = -2x + x \ln x + c$$
; $c \in \mathbb{R}$

or
$$G(1) = 0$$
 donc $-2 + c = 0$ donc $c = 2$ donc $G(x) = 2 - 2x + x \ln x$.

2) a) $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} -\frac{3}{4}x^2 + \frac{1}{2}x^2 \ln x = 0 = f(0)$ donc f est continue à droite en 0

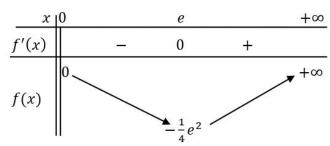
$$\lim_{x\to+\infty} f(x) = \lim_{x\to+\infty} -\frac{3}{4}x^2 + \frac{1}{2}x^2 \ln x = \lim_{x\to+\infty} \widetilde{x^2} \left(-\frac{3}{4} + \frac{1}{2} \ln x \right) = +\infty$$

b)
$$\forall x \in]0, +\infty[; f'(x) = \left(-\frac{3}{4}x^2 + \frac{1}{2}x^2 \ln x\right)' = \frac{1}{2}\left(-\frac{3}{2}x^2 + x^2 \ln x\right)'$$

 $= \frac{1}{2}\left(-3x + 2x \ln x + x^2 \times \frac{1}{x}\right) = \frac{1}{2}(-3x + 2x \ln x + x) = \frac{1}{2}(-2x + 2x \ln x)$
 $= -x + x \ln x = x(-1 + \ln x) = xg(x)$

c) On a $\forall x \in]0$, $+\infty[$; f'(x) = xg(x)

donc f'(x) est du signe de g(x) sur]0, $+\infty[$



- 3) a) f'(1) = -1; $f(1) = -\frac{3}{4}$; T: y = f'(1)(x-1) + f(1) donc $T: y = -x + \frac{1}{4}$
 - b) La fonction f est deux fois dérivable sur]0, $+\infty[$

$$\forall x \in]0, +\infty[; f''(x) = (xg(x))^{1/2}$$

$$= -1 + \ln x + x \times \frac{1}{x} = -1 + \ln x + 1 = \ln x$$

Donc f''(x) est du signe de $\ln x$ sur $]0, +\infty[$

Donc f''(x) s'annule en 1 tout en changeant de signe alors le point A est un point d'inflexion de C_f .

4) a) on a f(0) = 0 donc C_f coupe l'axe des abscisses au point O

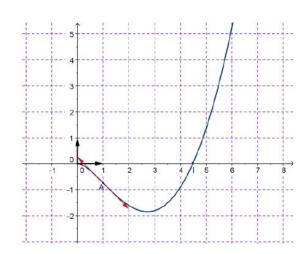
pour tout
$$x \in]0$$
, $+\infty[$, $M(x,y) \in C_f \cap (0,\vec{\iota}) \Leftrightarrow \begin{cases} f(x) = y \\ y = 0 \end{cases} \Leftrightarrow \begin{cases} f(x) = 0 \\ y = 0 \end{cases} \Leftrightarrow \begin{cases} -\frac{3}{4}x^2 + \frac{1}{2}x^2 \ln x = 0 \\ y = 0 \end{cases}$

$$\Leftrightarrow \begin{cases} x^2 \left(-\frac{3}{4} + \frac{1}{2} \ln x \right) \\ y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 0 \end{cases} \text{ impossible ou } \begin{cases} -\frac{3}{4} + \frac{1}{2} \ln x = 0 \\ y = 0 \end{cases} \text{ donc } \begin{cases} \ln x = \frac{3}{2} \\ y = 0 \end{cases}$$

donc $\begin{cases} x = e^{\frac{3}{2}} \\ y = 0 \end{cases}$ donc le point $I\left(e^{\frac{3}{2}}, 0.\right)$ est un point d'intersection de la courbe C_f avec l'axe des

abscisses. Ainsi C_f coupe l'axe des abscisses aux points O et I.

b)



5) La fonction f est continue sur]0, $+\infty[$ donc f admet des primitives sur]0, $+\infty[$.

La fonction F est dérivable sur]0, $+\infty[$;

$$\begin{aligned} \forall x \in \]0\,, +\infty[\ ; F'(x) &= \left(\frac{1}{6}x^3\ln x - \frac{11}{36}x^3\right)' = \frac{1}{6}\left(3x^2\ln x + \frac{1}{x} \times x^3\right) - \frac{3\times11}{36}x^2 \\ &= \frac{1}{2}x^2\ln x + \frac{1}{6}x^2 - \frac{3\times11}{36}x^2 = \frac{1}{2}x^2\ln x + \frac{6}{36}x^2 - \frac{33}{36}x^2 \\ &= \frac{1}{2}x^2\ln x - \frac{33}{36}x^2 = \frac{1}{2}x^2\ln x - \frac{3\times9}{4\times9}x^2 = \frac{1}{2}x^2\ln x - \frac{3}{4}x^2 = f(x) \end{aligned}$$

donc F est une primitive de f sur]0, $+\infty[$.